Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Towards a Better Understanding of Peer-Produced Structured Content Value

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Towards a Better Understanding of Peer-Produced Structured Content Value

Published Date

2019-07

Publisher

Type

Thesis or Dissertation

Abstract

Over the last 30 years, peer production has created everything from software (e.g. Linux) to encyclopedia articles (e.g. Wikipedia) to geographic data (e.g. OpenStreetMap). In recent years, peer production has increased its focus on the production of structured (key-value pair) content. This content is designed to be consumed by applications and algorithms. This thesis explores two challenges towards generating content that is as valuable as possible to these applications/algorithms. The first challenge is unique to the context of peer-produced structured data and is focused on a tension between the core peer production ethos of contributor freedom and the need for highly-standardized data in order for applications/algorithms to effectively operate. To explore this tension between freedom and standardization, I qualitatively analyze the ways in which it surfaces and then quantitatively analyze its impact. For the second challenge, I compare how different levels of automation affect content value. Contributions in peer production come from manual editing, semi-automated tool editing, and fully-automated bot editing. I use two important lenses to study the value provided by these different types of contributions. Specifically, I study value by considering 1) the relationship between content quality and demand, and 2) problematic societal-level content biases (e.g. along male versus female, Global North versus Global South, and urban versus rural lines). While peer-production research has explored these two lenses of value in the past, it has not sought to develop a robust understanding in the context of structured content. To ensure that automated and manual contributions are effectively differentiated, I also develop a bot detection model. Finally, I provide implications based on my results. For example, my work motivates socio-technical tools that can reduce the manual effort required to contribute structured data and tools that direct effort towards in-demand content.

Keywords

Description

University of Minnesota Ph.D. dissertation. July 2019. Major: Computer Science. Advisor: Loren Terveen. 1 computer file (PDF); 111 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Hall, Andrew. (2019). Towards a Better Understanding of Peer-Produced Structured Content Value. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/206662.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.