Time series change detection: algorithms for land cover change.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Time series change detection: algorithms for land cover change.

Published Date

2010-04

Publisher

Type

Thesis or Dissertation

Abstract

The climate and earth sciences have recently undergone a rapid transformation from a data-poor to a data-rich environment. In particular, climate and ecosystem related observations from remote sensors on satellites, as well as outputs of climate or earth system models from large-scale computational platforms, provide terabytes of temporal, spatial and spatio-temporal data. These massive and information-rich datasets offer huge potential for advancing the science of land cover change, climate change and anthropogenic impacts. One important area where remote sensing data can play a key role is in the study of land cover change. Specifically, the conversion of natural land cover into human-dominated cover types continues to be a change of global proportions with many unknown environmental consequences. In addition, being able to assess the carbon risk of changes in forest cover is of critical importance for both economic and scientific reasons. In fact, changes in forests account for as much as 20% of the greenhouse gas emissions in the atmosphere, an amount second only to fossil fuel emissions. Thus, there is a need in the earth science domain to systematically study land cover change in order to understand its impact on local climate, radiation balance, biogeochemistry, hydrology, and the diversity and abundance of terrestrial species. Land cover conversions include tree harvests in forested regions, urbanization, and agricultural intensification in former woodland and natural grassland areas. These types of conversions also have significant public policy implications due to issues such as water supply management and atmospheric CO2 output. In spite of the importance of this problem and the considerable advances made over the last few years in high-resolution satellite data, data mining, and online mapping tools and services, end users still lack practical tools to help them manage and transform this data into actionable knowledge of changes in forest ecosystems that can be used for decision making and policy planning purposes. In particular, previous change detection studies have primarily relied on examining differences between two or more satellite images acquired on different dates. Thus, a technological solution that detects global land cover change using high temporal resolution time series data will represent a paradigm-shift in the field of land cover change studies. To realize these ambitious goals, a number of computational challenges in spatio-temporal data mining need to be addressed. Specifically, analysis and discovery approaches need to be cognizant of climate and ecosystem data characteristics such as seasonality, non-stationarity/inter-region variability, multi-scale nature, spatio-temporal autocorrelation, high-dimensionality and massive data size. This dissertation, a step in that direction, translates earth science challenges to computer science problems, and provides computational solutions to address these problems. In particular, three key technical capabilities are developed: (1) Algorithms for time series change detection that are effective and can scale up to handle the large size of earth science data; (2) Change detection algorithms that can handle large numbers of missing and noisy values present in satellite data sets; and (3) Spatio-temporal analysis techniques to identify the scale and scope of disturbance events.

Description

University of Minnesota Ph.D. dissertation. April 2010. Major: Computer Science. Advisor: Prof. Vipin Kumar. 1 computer file (PDF); xiii, 146 pages. Ill. (some col.)

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Boriah, Shyam. (2010). Time series change detection: algorithms for land cover change.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/90706.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.