Non-Convex Phase Retrieval Algorithms and Performance Analysis

2018-04
Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Non-Convex Phase Retrieval Algorithms and Performance Analysis

Published Date

2018-04

Publisher

Type

Thesis or Dissertation

Abstract

High-dimensional signal estimation plays a fundamental role in various science and engineering applications, including optical and medical imaging, wireless communications, and power system monitoring. The ability to devise solution procedures that maintain high computational and statistical efficiency will facilitate increasing the resolution and speed of lensless imaging, identifying artifacts in products intended for military or national security, as well as protecting critical infrastructure including the smart power grid. This thesis contributes in both theory and methods to the fundamental problem of phase retrieval of high-dimensional (sparse) signals from magnitude-only measurements. Our vision is to leverage exciting advances in non-convex optimization and statistical learning to devise algorithmic tools that are simple, scalable, and easy-to-implement, while being computationally and statistically (near-)optimal. Phase retrieval is approached from a non-convex optimization perspective. To gain statistical and computational efficiency, the magnitude data (instead of the intensities) are fitted based on the least-squares or maximum likelihood criterion, which leads to optimization models that trade off smoothness for ‘low-order’ non-convexity. To solve the resultant challenging nonconvex and non-smooth optimization, the present thesis introduces a two-stage algorithmic framework, that is termed amplitude flow. The amplitude flows start with a careful initialization, which is subsequently refined by a sequence of regularized gradient-type iterations. Both stages are lightweight, and they scale well with problem dimensions. Due to the highly non-convex landscape, judicious gradient regularization techniques such as trimming (i.e., truncation) and iterative reweighting are devised to boost the exact phase recovery performance. It is shown that successive iterates of the amplitude flows provably converge to the global optimum at a geometric rate, corroborating their efficiency in terms of computational, storage, and data resources. The amplitude flows are also demonstrated to be stable vis-a-vis additive noise. Sparsity plays a instrumental role in many scientific fields - what has led to the upsurge of research referred to as compressive sampling. In diverse applications, the signal is naturally sparse or admits a sparse representation after some known and deterministic linear transformation. This thesis also accounts for phase retrieval of sparse signals, by putting forth sparsity-cognizant amplitude flow variants. Although analysis, comparisons, and corroborating tests focus on non-convex phase retrieval in this thesis, a succinct overview of other areas is provided to highlight the universality of the novel algorithmic framework to a number of intriguing future research directions.

Description

University of Minnesota Ph.D. dissertation. April 2018. Major: Electrical Engineering. Advisor: Georgios Giannakis. 1 computer file (PDF); ix, 149 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Wang, Gang. (2018). Non-Convex Phase Retrieval Algorithms and Performance Analysis. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/198408.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.