Detecting and Forecasting Economic Regimes in Automated Exchanges
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Detecting and Forecasting Economic Regimes in Automated Exchanges
Published Date
2007-03-05
Publisher
Type
Report
Abstract
We present basic building blocks of an agent that can use observable market conditions to characterize the microeconomic conditions of the market and predict future market trends. The agent can use this information to make both tactical decisions such as pricing and strategic decisions such as product mix and production planning. We develop methods that can learn dominant market conditions, such as over-supply or scarcity, from historical data using computational methods to construct price density functions. We discuss how this knowledge can be used, together with real-time observable information, to identify the current dominant market condition and to forecast market changes over a planning horizon. We validate our methods by presenting experimental results in a case study, the Trading Agent Competition for Supply Chain Management.
Keywords
Description
Related to
Replaces
License
Series/Report Number
Technical Report; 07-008
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Ketter, Wolfgang; Collins, John; Gini, Maria; Gupta, Alok; Schrater, Paul. (2007). Detecting and Forecasting Economic Regimes in Automated Exchanges. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215722.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.