Fine-Mapping, Physiological Evaluation, and Candidate Gene Exploration of an Iron Deficiency Chlorosis Tolerance Locus in Soybean
2020-07
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Fine-Mapping, Physiological Evaluation, and Candidate Gene Exploration of an Iron Deficiency Chlorosis Tolerance Locus in Soybean
Alternative title
Authors
Published Date
2020-07
Publisher
Type
Thesis or Dissertation
Abstract
Iron Deficiency Chlorosis (IDC) can be a significant yield limiting nutrient stress in soybean. IDC most frequently occurs in high pH soils that are rich in calcium carbonates, as is common in areas of the Midwestern United States. While several agronomic solutions exist to combat IDC, such as the application of iron chelates at planting, the use of tolerant soybean genotypes remains the most effective method of controlling IDC stress. Breeding for IDC tolerance is common, however little about the genetics of IDC is understood, aside from a major tolerance locus located on Gm03. A tolerance locus was previously discovered through bi-parental and association mapping on Gm05 to a 1.5 megabase region, which in this study was found to be important in elite soybean germplasm and warranted further investigation. Fine-mapping was conducted using heterogeneous inbred families, narrowing the interval to 137 kilobases and 17 genes. A controlled environment assay was developed to analyze the effect of nodulation, pH, and calcium carbonates on soybean genotypes and to assess the expression of Glyma.05g001700, a gene candidate in the fine-mapped region. Glyma.05g001700 was further explored using protein modeling, domain classification, gene homology, haplotype diversity, and overexpression in soybean hairy roots to assess gene function. It was concluded that Glyma.05g001700 is likely involved in iron homeostasis through changes in gene expression driven by a putative TATA box present in the tolerant genotype ‘Fiskeby III’.
Keywords
Description
University of Minnesota Ph.D. dissertation. July 2020. Major: Applied Plant Sciences. Advisors: Robert Stupar, Aaron Lorenz. 1 computer file (PDF); vi, 158 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Merry, Ryan. (2020). Fine-Mapping, Physiological Evaluation, and Candidate Gene Exploration of an Iron Deficiency Chlorosis Tolerance Locus in Soybean. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/216359.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.