Development Of Multi-Modal Techniques For The Investigation Of Brain Energetics
2015-10
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Development Of Multi-Modal Techniques For The Investigation Of Brain Energetics
Authors
Published Date
2015-10
Publisher
Type
Thesis or Dissertation
Abstract
The study of spontaneous and highly variable brain activity, or task-evoked activity and its quantitative relationship with neuroimaging signals, is severely restricted by the lack of techniques to investigate multiple measures of brain activity simultaneously. In order to study the coupling and interactions between metabolic, hemodynamic, and neuronal activity, we here develop the technology to acquire in vivo magnetic resonance (MR) spectroscopy (MRS) simultaneously from two or more nuclei, as well as develop MR-compatible electrodes for neuronal recording in the MR scanner with minimal susceptibility artifacts. We apply these techniques to investigate metabolic trends resulting from a whole brain occlusion in the rat and to study neuronal, hemodynamic, and network responses to changes in anesthesia depth. Lastly, we show the first steps in developing an MR-compatible optrode to allow simultaneous MR imaging (MRI), neuronal recording, and optogenetic stimulation. With these new techniques, a wide field of studies becomes feasible to investigate direct neuronal, metabolic, and hemodynamic correlations under resting and working conditions to advance our understanding of brain function and dysfunction.
Description
University of Minnesota Ph.D. dissertation. October 2015. Major: Biomedical Engineering. Advisor: Wei Chen. 1 computer file (PDF); ix, 139 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Taylor, Jennifer. (2015). Development Of Multi-Modal Techniques For The Investigation Of Brain Energetics. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/192685.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.