Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Examining Optimal Sight Distances at Rural Intersections

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Examining Optimal Sight Distances at Rural Intersections

Published Date

2019-07

Publisher

Minnesota Department of Transportation.

Type

Report

Abstract

Decisions made regarding driver sight distance at rural intersections are complex and require considerations for safety, efficiency, and environmental factors. Sight distance, cross-traffic velocity, and vehicle placements significantly affect driver judgment and behavior atthese intersections. A series of rural, two-lane thru-STOP simulated intersections with differing sight distances and traffic speeds were created and then validated by county and state engineers. Experimental data from 36 participants in a time-to-collision (TTC) intersection crossing judgment task and a rural highway thru-STOP intersection driving simulation task was analyzed to clarify the influence of rural thru-STOP intersection characteristics on driving performance and decision-making. Results demonstrated that longer sight distances of1,000 ft. and slower crossing speeds (i.e., 55 mph) were more accommodating for participants attempting to select gaps and cross from the minor road, corresponding with (1) lower mental workload, perceived risk, difficulty, and anxiousness, and (2) better performance in terms of estimated crash rate, and larger TTCs. Second, longer distances of 1,000 ft. appear to aid drivers’ responsiveness on the main road approaching an intersection, specifically when another driver on the minor road runs the stop sign. Minor road drivers positioned close tothe roadway at the stop sign, compared to standard stop bar placement, tended to help reduce the speed of main road drivers. Overall,results demonstrated a systematic improvement in the performance of both minor and major road drivers with the implementation of a1,000-foot sight distance at rural thru-STOP intersections.

Description

Related to

Replaces

License

Collections

Series/Report Number

;MnDOT 2019-34

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Morris, Nichole L.; Craig, Curtis M.; Achtemeier, Jacob D.. (2019). Examining Optimal Sight Distances at Rural Intersections. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/208697.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.