Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Application of Sparse Feedback Control Strategies to Civil Structures

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Application of Sparse Feedback Control Strategies to Civil Structures

Published Date

2016-05

Publisher

Type

Thesis or Dissertation

Abstract

Modern structural control systems use centralized, wired sensor feedback to impart counter forces based on measurement of the response. However, centralized systems can be sensitive to sensor failure, controller failure, and the reliability of sensor links. The recent study of wireless control systems has encouraged decentralized control approaches to overcome wireless structural control challenges, including limiting the wireless communication required and the associated slow sampling rate and time delays in the control system. Decentralized control offers the additional advantages of multiple independent controllers and small subsets of measurement feedback. Previous decentralized structural control algorithms, both Ad-Hoc and Heuristic, enforce a spatial sparsity pattern during the design, which is assumed \textit{a priori}. Therefore, the optimal feedback structure is not considered in the design. This work explores a decentralized optimal LQR design algorithm (LQRSP) where the sparsity of the feedback gain is incorporated into the objective function. The control approach is compared to previous decentralized control techniques on 5- and 20-Story control benchmark structures fitted with active or semi-active systems. Additionally, the sparsity and control requirements are compared to centralized designs to gain insight on the overall performance of sparse feedback systems. The LQRSP program and its additional parameters are explored more fully to make informed control decisions, further enhancing the decentralized control design. The optimal sparse feedback design offers the best balance of performance, measurement feedback, and control effort, while clearly highlighting important feedback control measurements. Additionally, the feedback structure identified is not easily identifiable \textit{a priori} in the reduced order model of the 20-story structure, highlighting the significance of particular measurements in this feedback framework. To bridge the gap between simulation and reality, the LQRSP design is extended to a discrete time simulation system to incorporate wireless transmission time as well as sensor and estimation noise. A 5-Story specimen with semi-active control devices is designed for a uniaxial shake table for future physical testing of various centralized and decentralized control algorithms during seismic excitations.

Description

University of Minnesota M.S. thesis. May 2016. Major: Civil Engineering. Advisor: Lauren Linderman. 1 computer file (PDF); viii, 104 pages.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Verdoljak, Reuben. (2016). Application of Sparse Feedback Control Strategies to Civil Structures. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/181824.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.