Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Movement Control And Cortical Activation In Functional Ankle Instability

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Movement Control And Cortical Activation In Functional Ankle Instability

Published Date

2008-07

Publisher

Type

Thesis or Dissertation

Abstract

Background: Functional ankle instability (FI) is a common development following first-time lateral ankle sprain, resulting in functional limitations. Local tissue damage has not been a satisfactory explanation. Evidence exists of changes in motor control within the central nervous system in individuals with FI. Further investigation of the nature of these changes is warranted. Methods: Twenty subjects with FI and twenty healthy control subjects allowed comparisons between ankles within groups and between groups. Two primary methods of investigation were used. A kinematic analysis using electromagnetic motion capture was used during a step down task to assess repeatability and variation in patterns of ankle dorsiflexion/plantarflexion and inversion/eversion motion and speed and phase timing characteristics. A normalized coefficient of multiple correlations was used for motion cycle comparisons, and means and variance were compared for discreet time variables. Motor control was measured with an accuracy index from an ankle tracking task. A sub-group of 8 right-involved FI subjects and 10 control subjects underwent functional magnetic resonance imaging to detect cortical activation in sensorimotor areas while performing the tracking task. Results: With the step down task no between-group differences in the repeatability of ankle motions were found, although both groups showed greater variability in inversion/eversion than dorsiflexion/plantarflexion. Increased ankle instantaneous angular speed when contacting the step was found in the FI subjects, with trends to reversing instantaneous linear velocity and more rapid weight acceptance also noted. No differences in tracking accuracy were identified; however, differential patterns of lateralization of cortical activation were found within groups between ankles during the task, with greater contralateral hemisphere activity in the primary motor area and more symmetrical activity in the primary sensory cortex (S1) and supplementary motor areas in FI subjects tracking with the involved ankle than was observed in control subjects tracking with the right ankle. Between-group comparisons found areas of greater activation in left S1, premotor cortex, and anterior cingulate gyrus compared to control subjects. Conclusions: The results of this study support that processing differences exist at the cortical level between FI and healthy control subjects. Motor performance differences are also present.

Description

University of Minnesota Ph.D dissertation. July, 2008. Major: Rehabilitation Science. Advisor: James R. Carey. 1 computer file (PDF); xii, 173 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Anderson, Kathleen Marie. (2008). Movement Control And Cortical Activation In Functional Ankle Instability. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/45636.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.