Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Elucidation of the extended pedigree of ‘Honeycrisp’ apple and genetic architecture of its susceptibility to soft scald and soggy breakdown postharvest fruit disorders and zonal leaf chlorosis disorder

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Elucidation of the extended pedigree of ‘Honeycrisp’ apple and genetic architecture of its susceptibility to soft scald and soggy breakdown postharvest fruit disorders and zonal leaf chlorosis disorder

Published Date

2017-06

Publisher

Type

Thesis or Dissertation

Abstract

The apple (Malus × domestica) cultivar Honeycrisp has become important economically and as a breeding parent due to its ultra-crisp fruit texture, its ability to retain this high level of fruit crispness in storage, and its resistance to apple scab. However, ‘Honeycrisp’ has several detrimental traits that have not been satisfactorily evaluated genetically. Additionally, the original pedigree records for ‘Honeycrisp’ were previously determined as incorrect and this lack of pedigree information has impeded thorough genetic analyses in studies involving ‘Honeycrisp’. The objectives of the research in my dissertation were to identify and genetically describe the parents and grandparents of ‘Honeycrisp’ and to use this new pedigree information in pedigree-based analyses to examine the genetic architecture of its susceptibility to fruit soft scald and soggy breakdown postharvest fruit disorders and zonal leaf chlorosis disorder. Towards these objectives, a high quality genetic map was created using single nucleotide polymorphism data from the apple 8K Illumina Infinium® SNP array and five large families with ‘Honeycrisp’ as a common parent. ‘Keepsake’ was verified as one parent of ‘Honeycrisp’ and ‘Duchess of Oldenburg’ and ‘Golden Delicious’ were identified as grandparents through a previously unknown parent that was identified to be the University of Minnesota selection MN1627. Two quantitative trait loci (QTL) were consistently identified on linkage groups (LGs) 2 and 16 for both soft scald and soggy breakdown. ‘Honeycrisp’ is homozygous for an identical by state haplotype identified at the LG2 QTL that was consistently associated with increased incidences of soft scald and soggy breakdown. ‘Honeycrisp’ inherited the deleterious haplotypes at the LG2 QTL from grandparent ‘Keepsake’ and great-grandparent ‘Grimes Golden’. A large effect QTL for zonal leaf chlorosis was identified on LG9 and a recombinant haplotype that ‘Honeycrisp’ inherited from ‘Duchess of Oldenburg’ at this QTL was associated with increased ZLC in offspring of ‘Honeycrisp’. The LG9 QTL was located approximately between 5 and 10 cM away from a major QTL for skin over color. ‘Honeycrisp’ is heterozygous for skin over color at this location. In ‘Honeycrisp’, the haplotype associated with increased zonal leaf chlorosis at the LG9 QTL is in coupling phase with the haplotype associated with red color at the LG9 skin over color QTL. All of these major QTL were consistently identified across all years of analysis. These new discoveries will be useful in apple breeding efforts involving ‘Honeycrisp’, its ancestors, and its progeny.

Description

University of Minnesota Ph.D. dissertation. June 2017. Major: Applied Plant Sciences. Advisors: James Luby, James Bradeen. 1 computer file (PDF); x, 119 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Howard, Nicholas. (2017). Elucidation of the extended pedigree of ‘Honeycrisp’ apple and genetic architecture of its susceptibility to soft scald and soggy breakdown postharvest fruit disorders and zonal leaf chlorosis disorder. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/200171.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.