Preference queries processing over imprecise data.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Preference queries processing over imprecise data.

Alternative title

Published Date

2011-05

Publisher

Type

Thesis or Dissertation

Abstract

With the increasing availability of various data sources, the preference queries are essential to find the relevant results to users. Several preference functions has been introduced in literature including: top-k [1], skylines [2], distributed skyline [3], spatial skyline [4], multi-objective [5], k-dominance [6], k-frequency [7], and ranked skylines [8], k-representative dominance [9], distance-based dominance [10], -skylines [11], top-k dominance [12], and stochastic skyline [13]. With the growing number of applications that generate imprecise data, e.g., sensor readings, human reading errors, and data imperfection, it has become essential to support preference queries of various types over imprecise data. Imprecise data can be classified into two categories: incomplete and uncertain data. Unfortunately, existing work for preference queries for the imprecise data are limited and isolated. This thesis addresses efficiently extending DBMS to be preference-aware over imprecise data. First, we address the problem of skyline queries over incomplete data where multi-dimensional data items are missing some values of their dimensions. We show that with incomplete data, the dominance relation among data points may not be transitive, thus, almost all existing techniques for skyline queries are not applicable. We propose an efficient algorithm to compute the skyline over incomplete data. Then, we define preference queries over uncertain data, represented as a continuous range. We propose a novel, efficient framework to answer these preference queries. Then, we present PrefJoin, an efficient preference-aware join query operator, designed specifically to deal with preference queries where the set of preferred attributes reside in more than one relation. The main idea of PrefJoin is to make the join operator aware of the required preference functionality. Finally, we extend PrefJoin framework to realize an efficient preference-aware operator which support imprecise data. The extended framework is denoted as PrefJoin*.

Description

University of Minnesota Ph.D. dissertation. May 2011. Major: Computer science. Advisor: Prof. Mohamed F. Mokbel. 1 computer file (PDF); x, 141 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Khalefa, Mohamed E.. (2011). Preference queries processing over imprecise data.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/108098.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.