Finding Novel Multivariate Relationships in Time Series Data: Applications to Climate and Neuroscience
2018-02-12
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Finding Novel Multivariate Relationships in Time Series Data: Applications to Climate and Neuroscience
Published Date
2018-02-12
Publisher
Type
Report
Abstract
In many domains, there is significant interest in capturing novel relationships between time series that represent activities recorded at different nodes of a highly complex system. In this paper, we introduce multipoles, a novel class of linear relationships between more than two time series. A multipole is a set of time series that have strong linear dependence among themselves, with the requirement that each time series makes a significant contribution to the linear dependence. We demonstrate that most interesting multipoles can be identified as cliques of negative correlations in a correlation network. Such cliques are typically rare in a real-world correlation network, which allows us to find almost all multipoles efficiently using a clique-enumeration approach. Using our proposed framework, we demonstrate the utility of multipoles in discovering new physical phenomena in two scientific domains: climate science and neuroscience. In particular, we discovered several multipole relationships that are reproducible in multiple other independent datasets, and lead to novel domain insights.
Keywords
Description
Related to
Replaces
License
Series/Report Number
Technical Report; 18-003
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Agrawal, Saurabh; Steinbach, Michael; Boley, Daniel; Liess, Stefan; Chatterjee, Snigdhansu; Kumar, Vipin; Atluri, Gowtham. (2018). Finding Novel Multivariate Relationships in Time Series Data: Applications to Climate and Neuroscience. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/216019.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.