Formulation Effects on Immune Response to Nanocarriers Encapsulating TLR 7 Agonist
2019-08
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Formulation Effects on Immune Response to Nanocarriers Encapsulating TLR 7 Agonist
Authors
Published Date
2019-08
Publisher
Type
Thesis or Dissertation
Abstract
Abstract Recent decades have witnessed remarkable progress in cancer immunotherapy as an approach to enhancing host immune response against cancer. Particularly, a cancer vaccine comprised of antigen, vaccine adjuvant, and delivery system has gained widespread attention, which can elicit immune response by activating dendritic cells (DCs), the critical antigen-presenting cells (APCs) 1. In the past decades, nanoformulations have gained extensive attention as drug carriers for improved cancer immunotherapy. Imidazoquinoline-based toll-like receptor (TLR) 7 agonist, imiquimod (IMQ), a cytokine inducer, could elicit DC activation. TLR7 activation stimulates myeloid differentiation primary-response gene 88 (MyD88) signaling pathways, elicit DCs to upregulate costimulatory molecules, secrete type I interferons and pro-inflammatory cytokines, and stimulate T cell- mediated immune response 2. The development of a variety of nanoformulations as drug carriers, such as polymeric poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) and liposomes, has broadened the application of TLR7 agonist in cancer immunotherapy. However, an improved understanding of how formulation factors could influence the immune response to nanocarriers encapsulating TLR 7 agonist can drive the discovery of more efficient platforms to deliver TLR 7 agonist to immune system for enhanced cancer immunotherapy. In this thesis, we encapsulated IMQ in PLGA NPs that were either naturally anionic or modified with didodecyldimethylammonium bromide (DMAB) to generate cationic surface charge. In addition, 18:0 PC 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoyl-3-trimethylammonium-propane (chloride salt) (DOTAP) were employed to formulate IMQ-loaded anionic DSPC liposomes and cationic DOTAP liposomes. These formulations were evaluated for in vitro DC activation and antigen presentation with a model antigen, ovalbumin (OVA), using bone marrow-derived dendritic cells (BMDCs) and DC 2.4 cell line. Cell viability assay showed that PLGA NPs and DSPC liposomes showed negligible cytotoxicity on BMDCs and DC 2.4 at low concentrations, whereas DMAB-PLGA NPs and DOTAP liposomes exhibited obvious cytotoxicity at relatively low concentrations. Also, anionic PLGA NPs were superior to other nanoformulations in eliciting costimulatory molecule expression by DCs, whereas cationic DOTAP liposomes were superior in inducing antigen presentation by DCs compared with other nanoformulations. Overall, our studies demonstrated that IMQ loaded PLGA NPs showed both better biocompatibility and stronger DC activation efficacy compared with other formulations. However, further studies are needed to understand the mechanism of formulation effects on immune response to nanocarriers encapsulating TLR 7 agonist. Definitely, the development of more efficient drug delivery systems encapsulating TLR agonists could contribute to vaccine-based cancer immunotherapy.
Description
University of Minnesota M.S. thesis. 2019. Major: Pharmaceutics. Advisor: Jayanth Panyam. 1 computer file (PDF); 49 pages.
Related to
Replaces
License
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Wang, Jiawei. (2019). Formulation Effects on Immune Response to Nanocarriers Encapsulating TLR 7 Agonist. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/224892.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.