Geometric methods for spectral analysis.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Geometric methods for spectral analysis.

Published Date

2011-11

Publisher

Type

Thesis or Dissertation

Abstract

The purpose of this thesis is to study the geometry of power spectra and develop geometric methods for spectral analysis, modeling, and filtering of time series. We first study notions of distance suitable to quantify mismatch between probability distributions, power spectra, and covariance matrices. To this end, we review and relate relevant concepts from statistical inference, information theory, signal processing, and quantum mechanics. We introduce several alternative metrics for scalar as well as multivariate power spectra, and explore concepts from Riemannian geometry, in particular geodesics and means, to model slowly varying time series, and to interpolate and fuse statistics from different sources. We first study mismatch between power spectra in the context of linear prediction. We introduce two alternative metrics. The first quantifies the degradation of predictive error variance when one power spectrum is used to design an optimal filter which is then applied to a process corresponding to another power spectrum. The second metric reflects the flatness of the innovations process. For this second metric, we provide closed-form expressions for the induced geodesics and geodesic distances. The theory we develop applies to multivariate power spectra. The metrics based on the prediction paradigm lack the important property of weak continuity. To this end we explore an alternative framework based on the transportation problem. In this, energy content has a physical significance and metrics quantify transportation cost between frequencies. Throughout we explore geometric methods on the Riemannian manifold of power spectra, in a way analogous to the familiar Euclidean geometry. In particular, we use the notion of a geodesic to model the evolution of power spectral densities for slowly varying time series. More specifically, we develop the idea of geodesic path-fitting as an analogue of the least squares line-fitting in the Euclidean space. Further, we investigate means or averages of distributions and of positive semi-definite matrices arising in signal processing, computer vision and pattern recognition applications. The transportation mean, as well as the median, for normalized scalar power spectra are provided analytically. For multivariate Gaussian distributions, we show that the transportation mean requires solving a linear matrix inequality problem, which is computationally tractable. Furthermore, linear structural constraints on the means, based on prior knowledge, can be easily incorporated and solved efficiently using the linear matrix inequality formulation. We highlight the relevance of the geometric framework with several applications in signal processing, such as spectral tracking, speech morphing, filtering, and spectral averaging.

Description

University of Minnesota Ph.D. dissertation. November 2011. Major: Electrical Engineering. Advisor: Professor Tryphon T. Georgiou. 1 computer file (PDF); xi, 141 pages, appendices A-D.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Jiang, Xianhua. (2011). Geometric methods for spectral analysis.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/119341.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.