Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Solid-State Block Polyelectrolytes

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Solid-State Block Polyelectrolytes

Published Date

2020-07

Publisher

Type

Thesis or Dissertation

Abstract

While polyelectrolytes are, in general, hydrophilic and soluble in water, there are many applications that benefit from immobilized solid-state charged materials, including membrane separations and batteries. One convenient method to immobilize polyelectrolytes in a solid-state configuration is using block polymer materials self-assembled to contain charged polyelectrolyte domains immobilized by neutral supporting domains. We used this strategy to work towards charge mosaic materials, a proposed design for a piezodialysis-based water desalination system. In a charge mosaic membrane, there are both positively and negatively charged polymer domains that are spatially separated and independently cross the thickness of the material. In Chapter 2, we first developed a new technique to integrate this design into thin films. Through the synthesis of neutral ABC triblock polymers, we casted thin films with three microphase separated domains. We then demonstrated the functionalization of these materials in a mild, 2-in-1 postpolymerization modification that converted the A domain (poly(n-propyl styrene sulfonic ester)) to a negatively charged polyanion and the C domain (poly(vinylbenzyl chloride)) to a positively charged polycation in a mild, single step vapor exposure. While these materials demonstrated successful microphase separation with a simple functionalization that maintained morphology, they had poor long-range order and suffered from brittle mechanical properties that prevented their effective use as active layers in membrane separations. During the synthesis of an ABC triblock polymer for charge mosaic applications, we found a previously unreported miscibility between polystyrene and poly(vinylbenzyl chloride). Although both polymers had been used together in a number of previous applications, their solid-state structure had never been adequately explored. In Chapter 4, we attempted to characterize the Flory-Huggins interaction parameter between these two polymers using small-angle X-ray scattering of homogeneous polymer blends. We then synthesized a vinylbenzyl chloride derivative, vinylbenzyl nitrate, that demonstrated both microphase separation from polystyrene as well as facile postpolymerization modification and explosive properties. Chapter 3 attempted to solve the mechanical problems associated with the triblock polymers by integrating poly(styrene sulfonic ester) and poly(vinylbenzyl chloride) into a system that undergoes polymerization-induced microphase separation (PIMS). PIMS monoliths were made through a simple radical polymerization initiated in a homogeneous mixture of a macroinitiator dissolved in mono- and di-functional monomers. The PIMS technique results in strong materials that contain a bicontinuous structure comprising a percolating macroinitiator domain crossing the thickness of the crosslinked matrix. We used PIMS to produce solid monoliths using the neutral polyelectrolyte precursors previously used in the ABC triblock polymers. The macroinitiator domain was then functionalized to yield either a positively charged polycation material or a negatively charged polyanion material, confirmed using oppositely charged dyes and infrared characterization. The integration of both positive and negative charges into a PIMS system is approached in Appendix A. Simply mixing macroinitiators, a procedure based on previous literature, showed unexpected macrophase separation in the monolith. The use of block polymer macroinitiators to overcome solubility differences between the segments is presented as a potential solution and the synthesis of the first block polymer PIMS is demonstrated. Finally, we introduced the potential of using a polyelectrolyte as the matrix domain. Appendix B presents a proposed model for controlling swelling in the PIMS polyelectrolyte domain. By adding a poly(lactide) block to the poly(styrene sulfonic ester) macroinitiator, a degradable domain is introduced that can be selectively removed to free swelling space for the polyelectrolyte. We hypothesize that control over the swelling will provide a model system for the systematic variation of ion conductivity and provide insights into the fundamental effects of ion density, water content, and morphology. A slightly different project is explored in Chapter 5, where we develop a poly(lactide) based foam for use in floral foam applications. We formulate a mix of surfactants that make the hydrophobic, low melt-strength poly(lactide) into a rigid, low density (<0.02 g·cm–3), hydrophilic foam that readily absorbs water and supplies it to inserted flowers. The foam is compostable and made from renewable materials, making it a significant improvement over the petroleum based, non-degradable materials that are currently commercially available.

Description

University of Minnesota Ph.D. dissertation. July 2020. Major: Chemistry. Advisor: Marc Hillmyer. 1 computer file (PDF); xxxiv, 232 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Goldfeld, David. (2020). Solid-State Block Polyelectrolytes. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/216395.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.