Structural And Intrinsic Disorder In The Regulation Of Protein-Protein Interactions

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Structural And Intrinsic Disorder In The Regulation Of Protein-Protein Interactions

Published Date

2019-06

Publisher

Type

Thesis or Dissertation

Abstract

This thesis applied spectroscopy and molecular dynamics simulation to study the structural biology of actin-binding domains (ABDs) from the spectrin superfamily of proteins as well as an intrinsically disordered region (IDR) of an integral membrane protein called synaptotagmin 1. In the former case, the structural hypothesis being tested was that actin-binding domains exist in distinct conformational states that are either permissive to or inhibitory towards binding of actin filaments. This question was probed using pulsed-EPR, which measured distances between the calponin homology (CH) domains that make up the ABD as proxy for conformation in the presence or absence of actin or with and without disease-causing mutation. The initial hypothesis of a closed compact state being unable to bind actin and an open extended state being binding-competent was largely supported by the data. However, the hypothesis was ultimately refined to conclude that an “open” state is likely to still be a fairly collapsed structure that is dynamically disordered. With this model, future efforts will be able use the model to look for small molecules that perturb the conformational equilibrium of ABDs harboring disease-causing mutations in potentially therapeutically efficacious ways. Moreover, the model can be tested in other ABDs of the protein superfamily to assess similarities and differences in mechanism. In the case of the intrinsically disordered region of synaptotagmin 1, it was hypothesized that a post-translational modification, specifically phosphorylation of a threonine residue, caused a structural change in the IDR that then results in a change in neurotransmitter release. This hypothesis was also tested with spectroscopic methods, mainly FRET and circular dichroism, but also with molecular dynamics. It was found that mimicking the low dielectric environment of the membrane with co-solvents in solution and artificially in silico caused the synaptotagmin 1 IDR to fold into helical structure. The post-translational modification, however, was found to interfere with the formation of helical structure, providing a still incomplete but novel molecular explanation for the effect it has on potentiation of neurotransmitter release observed in vivo. At the very least, the structural model provides a working hypothesis that can be further explored in further work.

Description

University of Minnesota Ph.D. dissertation. June 2019. Major: Biochemistry, Molecular Bio, and Biophysics. Advisor: David Thomas. 1 computer file (PDF); xx, 174 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Fealey, Michael E.. (2019). Structural And Intrinsic Disorder In The Regulation Of Protein-Protein Interactions. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/206287.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.