A Study of Flow over Ventilated Discontinuities in a Boundary Layer
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
A Study of Flow over Ventilated Discontinuities in a Boundary Layer
Published Date
1969-06
Publisher
St. Anthony Falls Hydraulic Laboratory
Type
Report
Abstract
At present hydrodynamicists are critically interested in ventilation
as a means of vessel guidance and control. The injection of air into the boundary layer can also produce significant drag reduction benefits and cushion an abruptly changing flow boundary against the severity of cavitation damage in high velocity flows.
This report describes an experimental investigation of the characteristics of ventilated cavities situated in a boundary layer and their effects, including drag reduction. Study cases include free surface flows over ventilated boundary discontinuities in the form of a step, a slot, and a break-in-grade.
The observed cavities are generally similar to those found in the wake of supercavitating hydrofoils. The quantitative results refer to cavity length, air supply coefficient, and ventilation parameter, The maximum drag reduction obtained with a ventilated slot in a boundary layer over the smooth surface in the fully wetted case was on the order of fifteen per cent.
The average flow velocity for the drag reduction experiment was from ten to nineteen feet per second. Empirical cavity results are also compared with irrotational linearized potential flow theory in the appendix. Only the step experiment showed good agreement with theory.
Keywords
Description
Related to
Replaces
License
Collections
Series/Report Number
108
Funding information
National Science Foundation
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Ward, Bruce; Young, Alwin; Anderson, Alvin G.. (1969). A Study of Flow over Ventilated Discontinuities in a Boundary Layer. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/108326.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.