Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Multidimensional mastery testing with CAT

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Multidimensional mastery testing with CAT

Published Date

2013-12

Publisher

Type

Thesis or Dissertation

Abstract

Computerized mastery testing (CMT) is a subset of computerized adaptive testing (CAT) with the intent of assigning examinees to one of two, mutually exclusive, categories. Most mastery testing algorithms have been designed to classify examinees on either side of a cut-point in one dimension, but many psychological attributes are inherently multidimensional. Little psychometric work has generalized these unidimensional algorithms to multidimensional traits. When classifying examinees in multidimensional space, practitioners must choose a cut-point function that separates a mastery region from a non-mastery region. The possible cut-point functions include one in which a linear combination of ability across dimensions must exceed a threshold and one in which each ability must exceed a threshold irrespective of any other ability. Moreover, two major components of every classification test are choosing successive questions and determining when a classification decision should be made. One frequently used stopping rule in unidimensional mastery testing is the Sequential Probability Ratio Test (SPRT), in which a classification is made either when the log-likelihood test statistic is sufficiently large or when the maximum number of items has been reached. Due to inefficiencies in the SPRT, alternative algorithms have been proposed, such as the Generalized Likelihood Ratio (GLR), and the SPRT with Stochastic Curtailment (SCSPRT). The current study explores properties of unidimensional classification testing algorithms, generalizes unidimensional methods to multidimensional mastery tests, and then tests many of the multidimensional procedures. Most of the multidimensional algorithms yield relatively efficient and accurate multidimensional classifications. However, some multidimensional classification problems, such as classifying examinees with respect to a linear classification bound function, are more robust to poor choices in the item bank or adaptive testing algorithms. Based on results from the main study in this thesis, a follow-up study is proposed to better combine sequential classification methods with those based on directly quantifying incorrect classifications. I conclude by discussing consequences of the results for practitioners in realistic mastery testing situations.

Description

University of Minnesota Ph.D. dissertation. December 2013. Major: Psychology. Advisor: Niels G. Waller. 1 computer file (PDF); xiv, 244 pages, appendices A-D.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Nydick, Steven Warren. (2013). Multidimensional mastery testing with CAT. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/162508.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.