Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Stable isotopic investigation of late Neogene terrestrial paleoecology and paleoclimate of the circum-Mediterranean region

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Stable isotopic investigation of late Neogene terrestrial paleoecology and paleoclimate of the circum-Mediterranean region

Published Date

2010-08

Publisher

Type

Thesis or Dissertation

Abstract

The late Neogene was an interval of important global change, in which gradual cooling and aridification resulted in terrestrial ecosystems over much of the world that became essentially modern. The geologic record of the circum-Mediterranean region presents an exceptional opportunity to examine the interplay of tectonics, biology, and climate during this important transition, because the paleogeography of this region was influenced heavily by a unique tectonic situation governed by both large-scale convergence between Europe and Africa and smaller-scale extension within the Mediterranean Basin. Effects of this distinct tectonic regime include the establishment of land bridges that allowed migration of animals between Europe, Africa, and Asia, large-scale desiccation of inland seas due to tectonic closure of seaways connecting the Mediterranean Sea and the Atlantic Ocean, and development of intramontane basins that preserve an extensive sedimentary record of past continental environments. In combination with this unique tectonic situation, regional climatic and ecological effects in the circum-Mediterranean region resulted in a late Neogene transition to modern terrestrial ecosystems that was in many ways different than general global patterns. In order to better undstand the late Neogene transition both regionally and globally, the research presented here focuses on reconstruction of terrestrial paleoclimate and paleoecology in Spain and Italy through the development of a stable isotopic record from biogenic and and authigenic minerals preserved in fossil mammals and continental sediments. vii A reconstruction of Late Miocene to Pleistocene paleoclimate and paleoecology in Spain was developed through analysis of the oxygen isotopic composition (δ18O) of biogenic phosphate in tooth enamel and dentine from fossil mammals. Comparisons of δ18O between clades are consistent with morphological interpretations of habitat and physiology, and suggest a semi-aquatic habitat for anthracotheres, hippopotamids, and castorids, and open or mixed habitats for most gracile taxa such as equids and cervids. Comparisons of enamel and dentine δ18O indicate slight diagenetic alteration of dentine, but also suggest that such comparisons can be used to reconstruct reasonable values of diagenetic water δ18O. Since the δ18O of modern horses has been demonstrated to be a reasonable proxy for the δ18O of local meteoric water, which is in turn strongly dependent on mean annual temperature (MAT) for modern mid- to high-latitudes, the δ18O of fossil horses from Spain was used to reconstruct terrestrial paleotemperature. These reconstructions are consistent with global cooling during the late Cenozoic, with MAT for the late Miocene that is warmer than today by ~1–2 ºC in NE Spain and by ~4–5 ºC in SE Spain. The difference of ~8–9 ºC between NE and SE Spain for the Late Miocene is ~60% greater than the MAT difference between these same areas today. To examine the ways in which a desiccated Mediterranean Basin affected surrounding terrestrial environments during the Messinian Salinity Crisis (MSC), a paleoclimatic record of this event was developed through integrated analyses of sedimentology, δ18O, and the stable carbon isotopic composition (δ13C) of latest Miocene authigenic carbonates from the Baza Basin in southern Spain. A transition from dolomite- and calcite-rich palustrine and distal alluvial fan sediments to lacustrine diatomites and calcite-rich limestones is accompanied by a decrease in both δ13C and δ18O, reflecting increased lake level under a wetter climate. The mean δ18O of latest Miocene lacustrine calcite is significantly lower than that of modern closed-basin lakes in the Iberian Peninsula, and likely represents overflow or through-flow conditions with inflow waters derived from the surrounding Betic mountains. This result is consistent with some aspects of climate model reconstructions of the MSC, which suggest strengthened storm tracks from the Atlantic Ocean over southern Europe. Orographic uplift of these air masses along the Betic Cordillera may have resulted in enhanced precipitation and runoff in southern Spain. To examine the interplay between tectonics, environmental change, and biological evolution, a paleoecological record was developed from the δ13C of Late Miocene paleosols from the Baccinello Basin in northern Italy. These paleosols span the extinction of Oreopithecus bambolii, which was the only European hominoid to survive an important extinction event ca. 9.6 Ma. Oreopithecus is important for understanding the evolutionary history of Late Miocene hominoids, since its peculiar morphology precludes a simple interpretation of its phylogenetic position. The paleosol δ13C values show very low temporal and spatial variability (indicating plant ecosystem stability through time) and provide no evidence for ecologically significant changes in floral composition spanning the Oreopithecus extinction event. These results validate assumptions about the importance of tectonics and species interaction as an underlying cause for the extinction of Oreopithecus and its associated fauna. The paleosol δ13C values fall entirely within the range of isotopic variability for modern plants following the C3 photosynthetic pathway, indicating that C4 vegetation was not an important component of biomass. The research presented in this dissertation underscores the importance of the Mediterranean region for consideration of the interplay of climate, tectonics, and ecology during important global transitions occurring in the Late Miocene. The results of this research validate the utility of stable isotopic approaches to paleoenvironmental reconstruction, and provide a powerful complement to independent means of reconstructing terrestrial systems that are complex and often poorly understood, but nevertheless an extremely important component of the Earth System.

Description

University of Minnesota Ph.D. dissertation. August 2010. Major: Geology. Advisor: David Fox. 1 computer file (PDF); xiii, 270 pages, appendices A-I.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Matson, Samuel Dean. (2010). Stable isotopic investigation of late Neogene terrestrial paleoecology and paleoclimate of the circum-Mediterranean region. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/97733.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.