Reliable Air Data Solutions For Small Unmanned Aircraft Systems

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Reliable Air Data Solutions For Small Unmanned Aircraft Systems

Published Date

2020-07

Publisher

Type

Thesis or Dissertation

Abstract

This dissertation examines the problem of increasing Air Data System (ADS) reliability for small Unmanned Aerial Systems (UAS). A reliable ADS is required for the safe operation of aircraft; traditionally, a hardware redundant ADS design has been used. However, hardware redundancy is not feasible in small UAS since reliable ADS are expensive, and many small UAS have more stringent size, weight, and power constraints. The impracticality and limitations of hardware redundancy have motivated research in the last decade to identify alternatives to traditional ADS. In particular, estimating air data quantities, often denoted as Synthetic Air Data System (SADS), has become a viable strategy of interest. This dissertation examines the use of SADS to increase ADS reliability for small UAS. The key challenges associated with increasing ADS reliability in UAS are examined. First, calibrating low-cost air data sensors for small UAS is not well addressed in the open literature. Most existing calibration techniques do not work well with small UAS operating at low airspeeds, especially when the effects of wind cannot be ignored. This dissertation develops a method for calibrating a 5-hole probe sensor applied on small UAS using only using data from an IMU and GNSS. Second, many SADS use the aerodynamic parameters to help estimate air data quantities, but the accurate aerodynamic model is often unavailable. This dissertation proposes a model-free SADS which allows estimating angle of attack and sideslip without the need for an aerodynamic model. The performance and observability of this SADS are tested using both simulation and flight data. In addition, the problem of ADS integrity is addressed by systematically designing and analyzing the performance to ensure that it satisfies probabilistic continuity and integrity certification requirements. An ADS Fault Detection and Isolation (FDI) algorithm to detect and mitigate the effect of realistic Pitot tube failure modes is designed. The approach used is the Integrity Monitoring framework, which has been used successfully with GNSS-based precision landing systems for commercial aircraft. The FDI algorithm is validated with a flight data set in which a Pitot tube failed due to water blockage.

Description

University of Minnesota Ph.D. dissertation. July 2020. Major: Aerospace Engineering and Mechanics. Advisor: Demoz Gebre-Egziabher. 1 computer file (PDF); xv 245 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Sun, Kerry. (2020). Reliable Air Data Solutions For Small Unmanned Aircraft Systems. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/216822.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.