An ecological and evolutionary perspective on functional diversity in the genus Salix

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

An ecological and evolutionary perspective on functional diversity in the genus Salix

Published Date

2010-05

Publisher

Type

Thesis or Dissertation

Abstract

Natural selection, along with biochemical and architectural constraints can limit the trait combinations expressed by plants, creating functional trade-offs across species. These trade-offs often play a critical role in limiting species distributions by preventing them from performing well under all environmental conditions. For this dissertation, I examined the role of functional trade-offs in limiting species distributions at two geographic scales, focusing on species in the genus Salix (the willows). First, I examined whether species exhibited niche differentiation across a local water availability gradient, and investigated the extent that plant function and functional similarity influence species distributions and patterns of co-occurrence. For this analysis, I examined species distributions in relation to physiological and functional data collected in the field and in a greenhouse common garden. I also estimated a phylogeny of the species to examine patterns of species phylogenetic community structure and trait evolution. Second, I examined whether there was evidence for a trade-off between freezing tolerance and growth that could explain species range limits. This analysis involved comparing species freezing tolerances and growth rates under different environmental conditions and determining the extent that these traits related to species distributions. Overall, I found evidence that functional trade-offs are important in determining species distributions both within local plant communities and across broader geographic distributions. On a local level, species exhibit niche differentiation across a water availability gradient, and this differentiation is driven by a functional trade-off between drought tolerance and relative growth rate. Traits related to species drought tolerance and recruitment strategies also demonstrate correlated evolution with species water availability niches. At a broader geographic scale, species demonstrate a trade-off between freezing tolerance and growth. This trade-off is primarily the result of species dependence on photoperiod cues for growth regulation. The strong correlation between species growth rates, their freezing tolerances, and their modeled geographic ranges suggests that this trade-off could influence their geographic distributions. This research demonstrates the importance of functional trade-offs in determining the distributions of species in an ecological and economically important genus. It also demonstrates the value of integrative research that draws on physiological, evolutionary and ecological methodology.

Description

University of Minnesota Ph.D. dissertation. May 2010. Major: Plant Biological Sciences. Advisor: Dr. Jeannine Cavender-Bares. 1 computer file (PDF); viii, 155 pages, appendices 1-2.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Savage, Jessica Anne. (2010). An ecological and evolutionary perspective on functional diversity in the genus Salix. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/92750.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.