Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Effects of environmental factors on pathogen exposure and transmission in wild rodent populations

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Effects of environmental factors on pathogen exposure and transmission in wild rodent populations

Published Date

2023-08

Publisher

Type

Thesis or Dissertation

Abstract

Anthropogenic land-use change is altering ecosystems across the globe and has been implicated as a major factor increasing the spillover of zoonotic diseases from wildlife into human populations. Wild rodents are of particular importance for spillover as they host the largest diversity of zoonotic pathogens of any mammalian order. Moreover, rodent hosts of zoonotic pathogens have been found to increase in abundance in anthropogenic landscapes. In my dissertation, I investigate the effects of environmental factors related to anthropogenic land-use change on pathogen prevalence and transmission in wild rodent populations. Using an observational field study across landscape and habitat types, I broadly investigate the effects of anthropogenic development on the prevalence of zoonotic bacterial pathogens in wild Peromyscus mice (Chapter 1). I then turn to finer spatial scales to consider how spatial overlap can be used to approximate transmission in wildlife populations (Chapter 2). Using wild bank voles (Clethrionomys glareolus) as a model system, I leverage a replicated, experimental field study to quantify the effects of food supplementation and helminth macroparasite removal on vole space use and spatial overlap to approximate transmission opportunities (Chapter 3). Finally, I test how spatial overlap predicts infection of an endemic viral pathogen and examine whether the relationship between spatial overlap and infection is influenced by food abundance and macroparasite infection (Chapter 4). My research indicates that agricultural development may increase the prevalence of zoonotic bacterial pathogens in wild rodents. Further, I show that environmental factors alter the space use of wild rodents and that both environmental conditions and host traits are important to predict how spatial overlap affects transmission of an endemic pathogen. As such, my dissertation research has contributed empirical evidence that shows how environmental conditions alter zoonotic pathogen prevalence and transmission in wild rodent populations. This represents an important step forward in our ability to quantify the effects of anthropogenic land-use change on disease dynamics in wildlife, advancing our ability to understand and predict transmission dynamics and control spillover potential from wildlife into human populations.

Description

University of Minnesota Ph.D. dissertation. August 2023. Major: Ecology, Evolution and Behavior. Advisor: Meggan Craft. 1 computer file (PDF); ix, 148 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Mistrick, Janine. (2023). Effects of environmental factors on pathogen exposure and transmission in wild rodent populations. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/259775.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.