Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Wetlands of Cook Inlet Basin, Alaska: Classification and Contributions to Stream Flow

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Wetlands of Cook Inlet Basin, Alaska: Classification and Contributions to Stream Flow

Published Date

2017-04

Publisher

Type

Thesis or Dissertation

Abstract

Wetlands face threats from global change, even as protections have been institutionalized to conserve the amenities they provide. These institutional protections frequently rely on a wetland classification system to guide conservation. In the Cook Inlet Basin of Alaska, USA (CIB), for example, best wetland assessment practices require the use of a classification system to ensure the conservation of the most valuable amenities. However, the systems used widely in the USA outside of Alaska, where peatlands are not common, inadequately describe the diversity of peatlands on the glaciated landscape of the CIB. Here I present a new Cook Inlet Classification system (CIC) organized around the hydrogeologic settings of wetlands in the CIB. The variables most strongly correlated with ecological differences within major geomorphic classes were used to construct a system supported by ample field data. The CIC produced greater within-class similarity than other widely-used systems, likely due to the overriding importance of the seasonal variability of water levels in CIB peatlands. The CIC has been mapped over an area of 7600 km2 and has guided wetland functional assessments in the CIB, and may be adaptable to any region supporting peatlands on glacial landforms. The harmful effects of a warming climate on aquatic resources may be partially ameliorated by discharge of shallow groundwater from peatlands to streams. This potential benefit of peatlands was investigated in the CIB using end-member mixing analysis (EMMA) and a sensitivity analysis of a water budget to quantify the contribution from extensive peatlands formed over glacial lake deposits to stream flow during the dry-season. Although peatlands in this hydrogeologic setting are common globally, the discharge from them is challenging to quantify. A spatially distributed sampling protocol at a single point-in-time produced a reliable EMMA showing that over half of stream flow on a day during the summer dry period originated near the surface of peatlands. This finding is being used to establish the value of peatlands for buffering increases in stream temperature, which have exceeded tolerances of commercially important fishes in the CIB. The analysis also suggests that differences in hydrogeologic setting influence shallow groundwater hydrology in peatlands.

Description

University of Minnesota Ph.D. dissertation. March 2017. Major: Conservation Biology. Advisor: Paul Glaser. 1 computer file (PDF); vi, 128 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Gracz, Michael. (2017). Wetlands of Cook Inlet Basin, Alaska: Classification and Contributions to Stream Flow. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/188829.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.