Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Deep reinforcement learning for personalized treatment recommendation

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Deep reinforcement learning for personalized treatment recommendation

Published Date

2023-03

Publisher

Type

Thesis or Dissertation

Abstract

In precision medicine, the ultimate goal is to recommend the most effective treatment to an individual patient based on patient-specific molecular and clinical profiles, possibly high-dimensional. To advance cancer treatment, large-scale screenings of cancer cell lines against chemical compounds have been performed to help better understand the relationship between genomic features and drug response; existing machine learning approaches use exclusively supervised learning, including penalized regression and recommender systems. When there is only one time point, it refers to individualized treatment selection, which is employed to maximize a certain clinical outcome of a specific patient based on a patient's clinical or genomic characteristics, given a patients' heterogeneous response to treatments. Although developing such a rule is conceptually important to personalized medicine, existing methods such as the $L_1$-penalized least squares \citep{qian2011performance} suffers from the difficulty of indirect maximization of clinical outcome, while the outcome weighted learning \citep{zhao2012estimating} directly maximizing the clinical outcome is not robust against any perturbation of the outcome. We will first propose a weighted $\psi$-learning method to optimize an individualized treatment rule, which is robust again perturbation of data near decision boundary through the notation of separation. To deal with nonconvex minimization, we employ a difference of convex algorithm to solve the non-convex minimization iteratively based on a decomposition of the cost function into a difference of two convex function. On this ground, we also introduce a variable selection method for further removing redundant variables for higher performance. Finally, we illustrate the proposed method through simulations and a lung health study, and demonstrate that it yields higher performance in terms of accuracy of prediction of individualized treatment. However, it would be more efficient to apply reinforcement learning (RL) to sequentially learn as data accrue, including selecting the most promising therapy for a patient given individual molecular and clinical features and then collecting and learning from the corresponding data. In this way, we propose a novel personalized ranking system called Proximal Policy Optimization Ranking (PPORank), which ranks the drugs based on their predicted effects per cell line (or patient) in the framework of deep reinforcement learning (DRL). Modeled as a Markov decision process (MDP), the proposed method learns to recommend the most suitable drugs sequentially and continuously over time. As a proof-of-concept, we conduct experiments on two large-scale cancer cell line data sets in addition to simulated data. The results demonstrate that the proposed DRL-based PPORank outperforms the state-of-the-art competitors based on supervised learning. Taken together, we conclude that novel methods in the framework of DRL have great potential for precision medicine and should be further studied.

Description

University of Minnesota Ph.D. dissertation. March 2023. Major: Statistics. Advisors: Xiaotong Shen, Wei Pan. 1 computer file (PDF); xi, 92 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Liu, Mingyang. (2023). Deep reinforcement learning for personalized treatment recommendation. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/257106.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.