Engineered Proteins for Studying and Controlling Cellular Recognition

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Engineered Proteins for Studying and Controlling Cellular Recognition

Published Date

2018-08

Publisher

Type

Thesis or Dissertation

Abstract

The ability to direct cell-cell interactions has tremendous value in several therapeutic fields. While genetically-encoded artificial receptors have proven efficacious, their scope is limited by the genetic engineering that underlies the approach. To circumvent some of these limitations, our group has developed a non-genetic method to modify any cell surface with a targeted protein scaffold. First, we engineered a protein ligand based upon the human tenth type III fibronectin domain (Fn3) that binds to epithelial cell adhesion molecule (EpCAM), an overexpressed tumor antigen. Using yeast surface display, mammalian cell panning, and a novel titratable avidity-reduction selection technique, we evolved Fn3 clones exhibiting high affinity and robust selectivity for cellular EpCAM. We then incorporated these Fn3s into a multivalent chemically self-assembled nanoring (CSAN). EpCAM-targeted CSANs were anchored to cell membranes through the hydrophobic insertion of phospholipids into the lipid bilayer. The targeting elements were subsequently removed from the cell surface by disassembling the CSAN with the antibiotic, trimethoprim. Using this system, we successfully directed and reversed targeted intercellular interactions in vitro. Finally, the modular CSANs were used to study how avidity impacts the apparent affinity of a multivalent scaffold. By tuning the number of Fn3 domains on the CSAN, we quantitatively described how the apparent affinity changes as a function of ligand affinity, domain valency, and antigen expression density. These results informed the development of a CSAN capable of discriminating between cells expressing different quantities of EpCAM both in vitro and in vivo. In conclusion, we developed a diverse toolkit for directing and studying cell-cell interactions. The CSAN platform is applicable to several therapeutic arenas and, by balancing affinity and avidity, may offer advantages over current cell-directing methods.

Description

University of Minnesota Ph.D. dissertation. 2018. Major: Medicinal Chemistry. Advisor: Carston Wagner. 1 computer file (PDF); 199 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Csizmar, Clifford. (2018). Engineered Proteins for Studying and Controlling Cellular Recognition. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/201057.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.