Engineered Proteins for Studying and Controlling Cellular Recognition
2018-08
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Engineered Proteins for Studying and Controlling Cellular Recognition
Authors
Published Date
2018-08
Publisher
Type
Thesis or Dissertation
Abstract
The ability to direct cell-cell interactions has tremendous value in several therapeutic fields. While genetically-encoded artificial receptors have proven efficacious, their scope is limited by the genetic engineering that underlies the approach. To circumvent some of these limitations, our group has developed a non-genetic method to modify any cell surface with a targeted protein scaffold. First, we engineered a protein ligand based upon the human tenth type III fibronectin domain (Fn3) that binds to epithelial cell adhesion molecule (EpCAM), an overexpressed tumor antigen. Using yeast surface display, mammalian cell panning, and a novel titratable avidity-reduction selection technique, we evolved Fn3 clones exhibiting high affinity and robust selectivity for cellular EpCAM. We then incorporated these Fn3s into a multivalent chemically self-assembled nanoring (CSAN). EpCAM-targeted CSANs were anchored to cell membranes through the hydrophobic insertion of phospholipids into the lipid bilayer. The targeting elements were subsequently removed from the cell surface by disassembling the CSAN with the antibiotic, trimethoprim. Using this system, we successfully directed and reversed targeted intercellular interactions in vitro. Finally, the modular CSANs were used to study how avidity impacts the apparent affinity of a multivalent scaffold. By tuning the number of Fn3 domains on the CSAN, we quantitatively described how the apparent affinity changes as a function of ligand affinity, domain valency, and antigen expression density. These results informed the development of a CSAN capable of discriminating between cells expressing different quantities of EpCAM both in vitro and in vivo. In conclusion, we developed a diverse toolkit for directing and studying cell-cell interactions. The CSAN platform is applicable to several therapeutic arenas and, by balancing affinity and avidity, may offer advantages over current cell-directing methods.
Description
University of Minnesota Ph.D. dissertation. 2018. Major: Medicinal Chemistry. Advisor: Carston Wagner. 1 computer file (PDF); 199 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Csizmar, Clifford. (2018). Engineered Proteins for Studying and Controlling Cellular Recognition. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/201057.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.