Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Influence of plant diversity and perennial plant identity on <i>Fusarium</i> communities in soil

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Influence of plant diversity and perennial plant identity on <i>Fusarium</i> communities in soil

Published Date

2013-09

Publisher

Type

Thesis or Dissertation

Abstract

<i>Fusarium</i> communities in soil are highly diverse and may play key functional roles in native and agricultural ecosystems. Despite the diversity and functional relevance of soil <i>Fusarium</i> communities, very little is known about what determines their diversity, structure, and function. This work tested the effects of perennial plant identity and plant community diversity on <i>Fusarium</i> communities in soil. Soil was collected from the rhizosphere of native perennial legumes and grasses growing in monoculture and polyculture at the Cedar Creek, Long Term Ecological Research site in Minnesota, USA. To characterize <i>Fusarium</i> communities, soil DNAs were used to create and pyrosequence amplicon libraries from a single copy protein-coding locus (RPB2). For functional characterization, individual isolates of <i>Fusarium</i> were cultured from the same soil. A portion of the RPB2 locus was sequenced for phylogenetic characterization of each isolate. Isolates were also tested for carbon use as measured by growth on 95 carbon substrates using Biolog phenotype arrays, and for the capacity to produce multiple secondary metabolites as measured using a PCR assay developed from genomic resources. <i>Fusarium</i> communities were influenced by plant diversity and perennial plant identity. <i>Fusarium</i> community structure was differentiated between monoculture and polyculture plant communities and by plant species in monoculture. Drivers of the richness within Fusarium communities were lineage specific; one lineage showed a positive response to soil edaphic characteristics and another a negative response. Cultured <i>Fusarium</i> isolates from the same soil showed isolates from rhizosphere soil of the legume <i>L. capitata</i> used more carbon substrates than isolates from the grass <i>A. gerardii</i>. Phylogenetic characterization showed that isolates within a given phylogenetic clade displayed more similar carbon use profiles than isolates between different clades, highlighting functional consequences of changes in the communities of the these fungi in response to plants. Screening for genes underlying the production of secondary metabolites in the <i>Fusarium</i> isolates showed the genetic potential to produce the plant hormones indoleacetic acid or gibberellic acid was correlated with reduced fungal growth.

Description

University of Minnesota Ph.D. dissertation. September 2013. Major: Molecular, Cellular, Developmental Biology and Genetics. Advisor: Anindya Bagchi. 1 computer file (PDF); ix, 127 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

LeBlanc, Nicholas. (2013). Influence of plant diversity and perennial plant identity on <i>Fusarium</i> communities in soil. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/175529.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.