Micronutrient interactions affecting the developing rat brain

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Micronutrient interactions affecting the developing rat brain

Published Date

2013-06

Publisher

Type

Thesis or Dissertation

Abstract

Micronutrient deficiencies affect billions of people worldwide and often coexist in developing countries due to consumption of diets lacking nutrient diversity. Thus, it is important to consider how micronutrients such as copper (Cu), iron (Fe), and iodine interact physiologically. Cu, Fe, and iodine/thyroid hormone (TH) deficiencies lead to similar brain development deficits, suggesting these micronutrient deficiencies share a common mechanism contributing to the observed derangements. Previous studies in rodents and humans indicate that Cu and Fe deficiencies during adolescence or adulthood lead to impaired TH status. However, prior to this thesis research, relationships between Fe or Cu deficiencies and thyroidal status had not been assessed in the most vulnerable population, the developing fetus/neonate. My first two studies showed that Fe deficiency lowers newborn rat circulating and brain TH concentrations and alters TH-regulated brain gene expression. In a third study, Fe deficiency exacerbated the effect of mild TH insufficiency on neonatal thyroidal status and brain TH-responsive gene expression. Together, these novel findings suggest that impaired neonatal thyroidal status may contribute to some of the brain developmental abnormalities associated with fetal/neonatal Fe deficiency. Fe deficiency also has significant impacts on the developing brain independent of effects on thyroid function. In humans, Fe deficiency often results in anemia, reduced blood oxygen carrying capacity. Decreased oxygen delivery to the brain can induce a compensatory increase in blood vessel outgrowth. My final study demonstrated, for the first time, that Fe deficiency anemia increases blood vessel growth in the neonatal rat brain. The functional contribution of increased vasculature to the developing Fe-deficient brain is unknown but could be adaptive, maladaptive, or both. In summary, my thesis research exploring micronutrient interactions during brain development has identified two novel potential contributors to the brain developmental derangements associated with Fe deficiency: impaired neonatal thyroid function and increased neonatal brain vasculature.

Description

University of Minnesota PH.D. dissertation. June 2013. Major: Integrated Biosciences. Advisor: Grant W. Anderson. 1 computer file (PDF); xii, 254 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Bastian, Thomas William. (2013). Micronutrient interactions affecting the developing rat brain. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/155558.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.