Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Full waveform analysis of ground penetrating radar measurements.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Full waveform analysis of ground penetrating radar measurements.

Published Date

2011-08

Publisher

Type

Thesis or Dissertation

Abstract

The purpose of this study is to extend the use of ground penetrating radar methodology towards a more reliable and accurate interpretation of pavement conditions. First, a complete set of 3D layered electromagnetic Green's functions is derived by way of transverse electric and transverse magnetic scalar potentials, featuring a new "direct" formulation for the field forms of the spectral Green's functions. The improper integrals underpinning the computation of the corresponding point-load solutions in the spatial domain are evaluated via the method of asymptotic decomposition, wherein the singular behaviors are entirely extracted and integrated analytically -- so that the remaining residual components can be computed effectively and accurately via adaptive numerical quadrature. It is also found that, in the spectral domain, the decay of the (numerically-integrated) residual field forms is commensurate to that of their potential-form counterparts, which eliminates the perceived gap between the computation of the field forms and respective potential forms of the Green's functions in the spatial domain. The effectiveness and accuracy of the proposed methodology is evaluated via comparison with relevant examples in the literature. Second, utilizing the derived electromagnetic Green's function for a layered system due to a horizontal electric dipole, the GPR scan can be simulated over a wide range of pavement profiles. Examples are provided for GPR simulation on a three-layer pavement system. By virtue of this forward model, the best match of the GPR scan in terms of the full waveform can be recovered within thousands of simulations via a optimization routine, where the in-situ layer parameters associated with the measurement are found to be equal to the simulation inputs. The accuracy of the interpreted layer thickness from the proposed scheme is verified by ground truth, with average error around 2.3% compared to 7.5% average error for the traditional method. In addition, the proposed scheme allows an evaluation of the relevant pavement properties with no prior assumptions or subjective image adjustments, unlike the traditional method.

Description

University of Minnesota Ph.D. dissertation. August 2011. Major: Civil Engineering. Advisors: Joseph Labuz, Bojan Guzina. 1 computer file (PDF); viii, 84 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Cao, Yuejian. (2011). Full waveform analysis of ground penetrating radar measurements.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/115666.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.