Probing OleA Mechanism and Diversity Using Alternative Substrates

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Probing OleA Mechanism and Diversity Using Alternative Substrates

Published Date

2021-08

Publisher

Type

Thesis or Dissertation

Abstract

Various microorganisms posses the ability to create long chain olefinic hydrocarbons, which can be useful as biofuel precursors or for the creation of specialty chemicals. Additionally, the biosynthesis pathways for the production of these olefins can be used to create other high value compounds such as β-lactone therapeutics and surfactants. Our lab has identified hundreds of possible olefin and β-lactone biosynthetic gene clusters, however many of the end products are unknown. In order to test the diversity of olefins produced, we focused our efforts on the first enzyme in the pathway, OleA. OleA is a thiolase that condenses two fatty acyl-CoAs into a β-keto acid, which eventually becomes the olefin or β-lactone end-product. Earlier research has shown that OleA is responsible for the overall shape of the end-product, through its substrate specificity. Thus, we surmised that studying OleA would provide insight on the natural variance of Olefin and β-lactone compounds produced in nature. Through a collaboration with the Joint Genome Institute we have sampled a total of 72 OleA recombinant proteins using a new colorimetric assay that was developed through the use of inexpensive and readily available p-nitrophenyl compounds as substrate analogs. Our research has shown that many of these OleA proteins are able to accept a wide variety of compounds, many of which are not found in nature. In addition to the development of the screen, we discovered that the p-nitrophenyl ester could only participate as the first substrate of the Claisen condensation reaction of OleA. We then exploited this to produce the β-keto acid product using p-nitrophenyl esters, as well as further refine the OleA mechanism, by demonstrating the directionality of the Claisen condensation. Finally, we showed the addition of cetyltrimethylammonium bromide (CTAB), below critical micelle concentrations, can improve the yield of OleA, both when using native or alternative substrates. This improves the potential for OleA to become a biotechnologically important enzyme, and points to future ways we can improve the overall enzyme pathway to generate large amounts of desired product. This thesis represents a first step in a larger goal of producing industrially relevant β-lactone compounds and their derivatives.

Description

University of Minnesota Ph.D. dissertation. 2021. Major: Microbiology, Immunology and Cancer Biology. Advisors: Lawrence Wackett, Jake Bailey. 1 computer file (PDF); xiv, 172 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Smith, Megan. (2021). Probing OleA Mechanism and Diversity Using Alternative Substrates. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/224968.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.