Development and Cellular Evaluation of Selective N-Terminal BET Bromodomain Inhibitors

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Development and Cellular Evaluation of Selective N-Terminal BET Bromodomain Inhibitors

Published Date

2021-08

Publisher

Type

Thesis or Dissertation

Abstract

As regulators of transcription, proteins that interpret post-translational modifications to N-terminal histone tails are essential for maintaining cellular homeostasis. When dysregulated, these ‘reader’ proteins become drivers of disease. In the case of bromodomains, which recognize N-acetylated-lysine, developing domain selective inhibitors has been a significant challenge to medicinal chemists. However, recent development of inhibitors with domain-selectivity within the Bromodomain and Extra Terminal (BET) family of bromodomains suggest the tandem BET bromodomains, BD1 and BD2, play differential roles in regulating gene expression. We identified tri-substituted imidazole-based inhibitors that are > 50-fold selective for the N-terminal bromodomains of BET proteins (BET-BD1) and display an unusual mode of domain selectivity via the displacement of conserved structured waters. We subsequently described a structure-based design approach to eliminate off-target p38a kinase affinity, while improving BET selectivity and affinity for BD1 of the bromodomain-containing protein 4 (BRD4). Using these molecules, we observe differential transcriptional effects relative to pan-BD1 inhibitors. Whereas BRD4-BD1 inhibition can reduce the expression of inflammatory cytokines, a weak effect on MYC super-enhancer regulation is only observed at concentrations when both BD1 and BD2 bromodomains are inhibited. Using our structural insights, new chemical-biology strategies were developed to study the role of BRD4 functional modulation through selective bromodomain targeting. Existing strategies to selectively target BRD4 rely on the use of pan-BET inhibitors. In the case of selective BRD4 degraders, pan-BET inhibitors are optimized for BRD4:protein-ubiquitin ligase (E3) ternary complex formation. Here, we present and validate a strategy for selectively targeting BRD4 through bivalent inhibition of both bromodomains, as well as a strategy to degrade BRD4 through its N-terminal bromodomain. Based on our novel BRD4-BD1 selective inhibitors, our unoptimized degrader dBRD4-BD1 induces BRD4 degradation at a half-maximal degradation concentration (DC50) of 0.28 μM, and results in the upregulation of BRD2 and 3. The design of selectivity upfront enables the study of BRD4 biology in the absence of wider BET-inhibition and simplifies design of future BRD4-selective degraders as new E3 recruiting ligands are discovered. Together, these approaches highlight the value of chemical probes that selectively target the unique functions of epigenetic reader domains.

Description

University of Minnesota Ph.D. dissertation. August 2021. Major: Medicinal Chemistry. Advisors: William Pomerantz, Daniel Harki. 1 computer file (PDF); xx, 400 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Divakaran, Anand. (2021). Development and Cellular Evaluation of Selective N-Terminal BET Bromodomain Inhibitors. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/259707.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.