Metallis photonic crystals for proposed applications as thermal emission devices.

Thumbnail Image

Persistent link to this item

View Statistics

Journal Title

Journal ISSN

Volume Title


Metallis photonic crystals for proposed applications as thermal emission devices.

Published Date




Thesis or Dissertation


Incandescent lighting is highly inefficient. One possible solution is to replace the traditional filament with an ordered photonic crystal filament that will increase the efficiency of the lamp. This work details steps towards the fabrication of such a filament with the fabrication of monolithic three-dimensionally ordered macroporous (3DOM) metallic photonic crystals. The 3DOM metallic materials produced in this work were comprised of W, Mo and alloys of those materials. The 3DOM W materials were produced from the precursors tungsten(VI) chloride, tungsten(V) ethoxide, tungstic acid, peroxotungstic acid, ammonium metatungstate (AMT) and an acetylated peroxotungstic acid (APTA). 3DOM Mo was produced from the precursors ammonium molybdate (AMo) and an acetylated peroxomolybdic acid (APMoA). To fabricate 3DOM W/Mo materials combinations of precursors of AMT and AMo were utilized or a combination of the syntheses APTA and APMoA to create APTA/APMoA was employed. A variety of synthetic conditions were optimized to produce large monolithic pieces of 3DOM W and 3DOM W/Mo with dimensions of up to 1×1×0.3 cm3. These conditions included varying the solvent mixture, precursor concentrations, reduction conditions and precursor infiltration technique. The 3DOM metallic monoliths were tested for thermal stability using both joule heating and radiant heating techniques in N2 atmospheres. Joule heating at 40 W for 15 min destroyed the nanostructure of the material. Radiant heating was employed to study the grain coarsening. At 800 ºC the 3DOM W monolith exhibited grain coarsening and needle formation caused by H2O in the system. Needle formation could be eliminated by rigorous evacuation or by the incorporation of Mo as an alloy. 3DOM W/Mo alloys at 95:5 wt% maintained their nanostructure and relative grain size at 800 ºC but were coarsened at 1000 ºC. At both temperatures the material did not produce needles even in the presence of minute amounts of water. The effect of Mo on the nanostructure was studied by in situ TEM heating to 1000 ºC. In 3DOM W/Mo alloys it is postulated that the Mo has a pinning effect on the dislocations in the structure. These methods provide a route towards fabricating 3DOM metallic photonic crystals for thermal emission.


University of Minnesota. dissertation. August 2009. Major: Chemistry. Advisor: Andreas Stein. 1 computer file (PDF); xiv, 108 pages, appendices A-C.

Related to




Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Denny, Nicholas Ryan. (2009). Metallis photonic crystals for proposed applications as thermal emission devices.. Retrieved from the University Digital Conservancy,

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.