Quantitative Evaluation of Approximate Frequent Pattern Mining Algorithms
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Quantitative Evaluation of Approximate Frequent Pattern Mining Algorithms
Published Date
2009-02-27
Publisher
Type
Report
Abstract
Traditional association mining algorithms use a strict definition of support that requires every item in a frequent itemset to occur in each supporting transaction. In real-life datasets, this limits the recovery of frequent itemset patterns as they are fragmented due to random noise and other errors in the data. Hence, a number of methods have been proposed recently to discover approximate frequent itemsets in the presence of noise. These algorithms use a relaxed definition of support and additional parameters, such as row and column error thresholds to allow some degree of "error" in the discovered patterns. Though these algorithms have been shown to be successful in finding the approximate frequent itemsets, a systematic and quantitative approach to evaluate them has been lacking. In this paper, we propose a comprehensive evaluation framework to compare different approximate frequent pattern mining algorithms. The key idea is to select the optimal parameters for each algorithm on a given dataset and use the itemsets generated with these optimal parameters in order to compare different algorithms. We also propose simple variations of some of the existing algorithms by introducing an additional post-processing step. Subsequently, we have applied our proposed evaluation framework to a wide variety of synthetic datasets with varying amounts of noise and a real dataset to compare existing and our proposed variations of the approximate pattern mining algorithms. Source code and the datasets used in this study are made publicly available.
Keywords
Description
Related to
Replaces
License
Series/Report Number
Technical Report; 09-005
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Gupta, Rohit; Fang, Gang; Field, Blayne; Steinbach, Michael; Kumar, Vipin. (2009). Quantitative Evaluation of Approximate Frequent Pattern Mining Algorithms. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215792.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.