Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Simulated Long-Term Temperature and Dissolved Oxygen Characteristics of Minnesota Lakes and Resulting Habitat Limits for Fishes

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Simulated Long-Term Temperature and Dissolved Oxygen Characteristics of Minnesota Lakes and Resulting Habitat Limits for Fishes

Published Date

1995-08

Publisher

St. Anthony Falls Hydraulic Laboratory

Type

Report

Abstract

A lake is exposed to meteorological forcing through the lake surface and hydrologic inputs from the lake basin. Solar radiation and atmospheric long wave radiation heat the water column, while evaporation and back radiation cool the water column. Inflows may heat or cool the water depending on the relative thermal state of the water column at the time of concern. In addition, convective heat transfer driven by the temperature difference between the water temperature and air temperature can also warm or cool a lake. The differential radiative heat absorption throughout the lake depth causes thermal stratification of the water body. The stronger the stratification, the more quiescent i.e. the more stable the water body. The external forcing i.e. wind exerts a drag force on the surface of the lake which, through a variety of external and internal wave motions tends to vertically mix the stratified water column (partially or completely). The external mechanical energy input from the wind is opposed by the potential (buoyant) energy "locked" in the stratification. The stronger the stratification, the more mechanical energy is needed to mix the water column. A schematic representation of a seasonal temperature stratification in a dimictic lake is given in Fig. 1a. The open-water season usually starts some time in April or May in Minnesota lakes depending on the geographical location and the size of the lake. Most lakes are well mixed throughout the entire lake depth in spring. The onset of stratification occurs with the increase of solar radiation intensity and some decrease in the wind activity. The thermal stratification increases in strength from May through July or August. Further water temperature increase in summer is limited by the evaporative heat losses, and by back radiation. In September, solar radiation and air temperature are significantly lower, and wind is often higher, resulting in strong surface cooling, natural convection, and wind-induced mixing. A three layer structure is well defined throughout the summer in many lakes. The surface mixed layer is called 'epilimnion', underneath is a zone of temperature gradient, the 'metalimnion'; and below is the 'hypolimnion'. Surface mixed layer depth increases in the fall until the lake becomes isothermal at a temperature above or equal to 4°C.

Keywords

Description

Related to

Replaces

License

Collections

Series/Report Number

Project Reports
352

Funding information

Environmental Research Laboratory, US Environmental Protection Agency

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Stefan, Heinz G.; Hondzo, M.; Fang, Xing. (1995). Simulated Long-Term Temperature and Dissolved Oxygen Characteristics of Minnesota Lakes and Resulting Habitat Limits for Fishes. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/109034.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.