Synthesis and Phase Behavior of Tetrablock Terpolymers

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Synthesis and Phase Behavior of Tetrablock Terpolymers

Published Date

2016-12

Publisher

Type

Thesis or Dissertation

Abstract

Block copolymers are macromolecules formed by covalently joining two or more distinct polymer blocks that may be thermodynamically incompatible. The incompatibility drives segregation of the individual blocks on the molecular scale (5 – 100 nm), producing extraordinarily varied and complex morphologies. This thesis describes the synthesis and phase behavior characterization of tetrablock terpolymers composed of poly(styrene) (S), poly(isoprene) (I), and poly(ethylene oxide) (O) with an emphasis on ABAC-type polymers. Motivated by SCFT calculations, investigation into the phase behavior of sphere-forming SIS′O tetrablocks led to the identification of multiple ordered structures upon varying the symmetry parameter τ = NS/(NS + NS′), where N is the block degree of polymerization. Complementary data from dynamic mechanical spectroscopy, small angle X-ray scattering, and transmission electron microscopy yielded evidence for nine different spherical phases: FCC, HCP, BCC, rhombohedral (tentative), liquid-like packing, dodecagonal quasicrystal, and Frank–Kasper σ and A15, and simple hexagonal packing (HEXS). Close to the order-disorder transition, equilibrium morphologies are formed due to facile chain exchange between micelles. Transition to non-equilibrium behavior occurred several tens of degrees below the order-disorder transition where increased segregation strength between the O core and SIS′ corona arrests chain exchange between domains. Structure and thermodynamic stability of the HEXS phase were examined in greater detail and the phase was found to be especially stable in low-τ samples. Switching the block sequencing from SISO to ISIO led to an extinguishment in complex behavior as only BCC and hexagonally packed cylinders (HEXC) were identified as ordered phases. The decrease in morphological complexity was attributed to the formation of frustrated interfaces as the ISIO molecular architecture mandates contact between the most thermodynamically incompatible I and O blocks. Additionally, synthetic strategies capable of producing ABCA′-type tetrablocks with asymmetrically sized corona chains were developed. These results expand the monomer toolkit capable of producing new types of block polymers and provide a deeper glimpse into the fundamental principles that guide block polymer phase behavior.

Description

University of Minnesota Ph.D. dissertation. December 2016. Major: Chemical Engineering. Advisor: Frank Bates. 1 computer file (PDF); xiii, 187 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Chanpuriya, Siddharth. (2016). Synthesis and Phase Behavior of Tetrablock Terpolymers. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/185618.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.