Characterization of glycosylphoshatidylinositol-anchored ceruloplasmin in multiple redent organs following dietary copper deficiency.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Characterization of glycosylphoshatidylinositol-anchored ceruloplasmin in multiple redent organs following dietary copper deficiency.

Alternative title

Published Date

2010-10

Publisher

Type

Thesis or Dissertation

Abstract

Copper is a necessary metal cofactor in many enzymes that catalyze key reactions in both prokaryotes and eukaryotes. Ceruloplasmin (Cp) is a copper-dependent enzyme that acts as a ferroxidase, oxidizing FeII to FeIII for systemic iron mobilization. Cp is expressed as both a secreted plasma (sCp) enzyme and a membrane-bound glycosylphosphatidylinositol- anchored (GPI-Cp) splice variant enzyme. sCp is the most abundant copper-binding protein in mammalian plasma. The ferroxidase activity of Cp is essential for iron mobilization, as Cp null humans and mice exhibit selective tissue-specific iron overload. Dietary copper deficient (CuD) rodents have near total loss of Cp activity, severe loss of Cp protein, and anemia. The impacts of dietary copper deficiency on GPICp has not been previously evaluated. Studies were conducted in Holtzman and Sprague- Dawley rats, albino mice, and Cp -/- mice, to investigate the copper-iron interaction and further characterize GPI-Cp. Purified membrane extracts of these rodent tissues detected immunoreactive Cp protein, especially enriched in spleen and kidney, but not in membranes from Cp -/- mice. Immunoreactive Cp protein was released with phosphotidylinositol-specific phospholipase C treatment and released protein exhibited ferroxidase activity. These data suggest that the membrane-bound Cp immunoreactivity detected is GPI-anchored. Following perinatal and postnatal copper restriction, GPI-Cp was markedly lower in spleen and modestly lower in liver of CuD rats and mice, compared to copper-adequate (CuA) rodents. Livers of CuD mice contained elevated liver non-heme iron (NHI), while spleen NHI was lower in CuD than CuA rats, and not different in CuD mice, implying that lower GPI-Cp was not correlated with augmented NHI levels in CuD rodent spleens. Spleen and liver membranes of CuD rats expressed augmented levels of ferroportin, the iron efflux transporter, which may compensate for the loss of GPI-Cp in iron efflux. Copper deficient rats and mice both develop severe anemia but only in rats is plasma iron lower than normal, consistent with impaired Cp function. As multicopper oxidases like Cp are thought to be the major metabolic link between copper and iron, additional research is needed to determine the impact, if any, of lower GPI-Cp on iron flux and the development of anemia when copper is limiting.

Description

University of Minnesota M.S. thesis. October 2010. Major: Intergrated Biosciences. Advisor: Dr. Joseph R. Prohaska. 1 computer file (PDF); v, 51 pages.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Mostad, Elise June. (2010). Characterization of glycosylphoshatidylinositol-anchored ceruloplasmin in multiple redent organs following dietary copper deficiency.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/103036.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.