Characterization of glycosylphoshatidylinositol-anchored ceruloplasmin in multiple redent organs following dietary copper deficiency.
2010-10
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Characterization of glycosylphoshatidylinositol-anchored ceruloplasmin in multiple redent organs following dietary copper deficiency.
Alternative title
Authors
Published Date
2010-10
Publisher
Type
Thesis or Dissertation
Abstract
Copper is a necessary metal cofactor in many enzymes that catalyze key reactions in
both prokaryotes and eukaryotes. Ceruloplasmin (Cp) is a copper-dependent enzyme that
acts as a ferroxidase, oxidizing FeII to FeIII for systemic iron mobilization. Cp is
expressed as both a secreted plasma (sCp) enzyme and a membrane-bound glycosylphosphatidylinositol-
anchored (GPI-Cp) splice variant enzyme. sCp is the most abundant
copper-binding protein in mammalian plasma. The ferroxidase activity of Cp is essential
for iron mobilization, as Cp null humans and mice exhibit selective tissue-specific iron
overload. Dietary copper deficient (CuD) rodents have near total loss of Cp activity,
severe loss of Cp protein, and anemia. The impacts of dietary copper deficiency on GPICp
has not been previously evaluated. Studies were conducted in Holtzman and Sprague-
Dawley rats, albino mice, and Cp -/- mice, to investigate the copper-iron interaction and
further characterize GPI-Cp. Purified membrane extracts of these rodent tissues detected
immunoreactive Cp protein, especially enriched in spleen and kidney, but not in
membranes from Cp -/- mice. Immunoreactive Cp protein was released with
phosphotidylinositol-specific phospholipase C treatment and released protein exhibited
ferroxidase activity. These data suggest that the membrane-bound Cp immunoreactivity
detected is GPI-anchored. Following perinatal and postnatal copper restriction, GPI-Cp
was markedly lower in spleen and modestly lower in liver of CuD rats and mice,
compared to copper-adequate (CuA) rodents. Livers of CuD mice contained elevated
liver non-heme iron (NHI), while spleen NHI was lower in CuD than CuA rats, and not
different in CuD mice, implying that lower GPI-Cp was not correlated with augmented
NHI levels in CuD rodent spleens. Spleen and liver membranes of CuD rats expressed
augmented levels of ferroportin, the iron efflux transporter, which may compensate for
the loss of GPI-Cp in iron efflux. Copper deficient rats and mice both develop severe
anemia but only in rats is plasma iron lower than normal, consistent with impaired Cp
function. As multicopper oxidases like Cp are thought to be the major metabolic link
between copper and iron, additional research is needed to determine the impact, if any, of
lower GPI-Cp on iron flux and the development of anemia when copper is limiting.
Description
University of Minnesota M.S. thesis. October 2010. Major: Intergrated Biosciences. Advisor: Dr. Joseph R. Prohaska. 1 computer file (PDF); v, 51 pages.
Related to
Replaces
License
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Mostad, Elise June. (2010). Characterization of glycosylphoshatidylinositol-anchored ceruloplasmin in multiple redent organs following dietary copper deficiency.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/103036.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.