The superparamagnetism of Yucca Mountain Tuff.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

The superparamagnetism of Yucca Mountain Tuff.

Published Date

1999

Publisher

Journal of Geophysical Research (American Geophysical Union)

Type

Article

Abstract

Yucca Mountain Tuff contains small titanomagnetite grains with narrow size distributions in the superparamagnetic range [Schlinger et al., 1988]. Magnetic measurements on three samples (comprising hysteresis loops at low and ambient temperatures, acquisition and demagnetization of isothermal remanent magnetization, thermal demagnetization of the saturation remanence and of a low-temperature thermoremanence, and frequency- and temperature-dependent susceptibilities) allow evaluation of the magnetic properties in terms of Néel's [1949] single-domain theory. Precise grain volume distributions have been obtained by applying the blocking volume concept to thermal demagnetization results. In contrast, an attempt to derive mean particle volumes by fitting a Langevin curve to the room temperature magnetization curves fails, probably because the precondition for the Langevin function, KV/kT≪1, is not met. It is only for the sample with the smallest grains and in weak fields (<20 mT) that a Langevin fit provides a reasonable volume estimate. There is good agreement between the experimental results and the calculated frequency and temperature dependence of susceptibility, thus verifying that Néel's theory is sufficient for the magnetic description of single-domain assemblages spanning the superparamagnetic/stable single-domain boundary. However, some deviations between modeled and measured susceptibilities exist, and the physical causes may include size-dependent anisotropy, nonuniform magnetizations, and also an uncertain preexponential time “constant” τ0. While τ0 = 10−11 s gives the best fit for the sample with the largest grains, τ0 = 10−9 s is more reasonable for the others. Thus τ0 may indeed be size- and temperature-dependent as predicted by Brown [1959]. The commonly cited parameter χfd (frequency dependence of susceptibility) reaches 30% at room temperature (RT) for one sample with a blocking temperatures just below RT, while χfd = 0 at RT for a superparamagnetic sample with smaller grains. These results thus exemplify that χfd is not limited to 15%, as a number of studies suggest, and that χfd = 0 must not be taken to imply the absence of superparamagnetic grains.

Description

Related to

Replaces

License

Series/Report Number

Funding information

Financial support from the "Deutsche Forschungsgemeinschaft" is gratefully acknowledged. This is IRM contribution 9902. The IRM is supported by grants from the National Science Foundation and the W. M. Keck Foundation.

Isbn identifier

Doi identifier

10.1029/1999JB900285

Previously Published Citation

Worm, H.-U. and M. Jackson (1999). "The superparamagnetism of Yucca Mountain Tuff." Journal of Geophysical Research B: Solid Earth 104(B11): 25,415-425,425.

Suggested citation

Worm, Horst; Jackson, Mike. (1999). The superparamagnetism of Yucca Mountain Tuff.. Retrieved from the University Digital Conservancy, 10.1029/1999JB900285.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.