Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Improved prediction of protein model quality

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Improved prediction of protein model quality

Published Date

2008-01-22

Publisher

Type

Report

Abstract

Methods that can automatically assess the quality of computationally predicted protein structures are important, as they enable the selection of the most accurate structure from an ensemble of predictions. Assessment methods that determine the quality of a protein's structure by comparing it against the various structures predicted by different servers have been shown to outperform approaches that rely on the intrinsic characteristics of the structure itself. We developed an algorithm to estimate the quality of a predicted protein structure using a consensus approach. Our method uses LGA to align the structure in question to the structures for the same protein predicted by different servers and estimates the per-residue error by averaging the distances across these alignments. On a dataset containing 892,299 positions from 4,969 CASP7 submissions, our method achieved a root mean squared error (RMSE) of 6.69angstroms, which is significantly better than the 8.21angstroms achieved by the winning scheme in CASP7 for this problem (Pcons). We further improved these results to 6.51angstroms by developing a scheme that carefully selects which distances to average based on the predicted quality of the overall structure. We also examined the use of machine learning approaches to learn an appropriate aggregation scheme, which led to a simple weight learning approach achieving a 2.61angstroms RMSE on a reduced dataset. Our results show that the use of LGA alignments and aggregation of raw distances is the primary reason for its performance advantage. In addition, our results show that beyond a binary inclusion/exclusion decision, learning from the data a set of weights by which the structures of the different servers can be aggregated can further improve performance.

Keywords

Description

Related to

Replaces

License

Series/Report Number

Technical Report; 08-002

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

DeRonne, Kevin; Karypis, George. (2008). Improved prediction of protein model quality. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215745.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.