Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis

Title

3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis

Published Date

2017

Publisher

Elsevier

Type

Article

Abstract

Honey bees, Apis mellifera, collect antimicrobial plant resins from the environment and deposit them in their nests as propolis. This behavior is of practical concern to beekeepers since the presence of propolis in the hive has a variety of benefits, including the suppression of disease symptoms. To connect the benefits that bees derive from propolis with particular resinous plants, we determined the identity and botanical origin of propolis compounds active against bee pathogens using bioassay-guided fractionation against the bacterium Paenibacillus larvae, the causative agent of American foulbrood. Eleven dihydro-flavonols were isolated from propolis collected in Fallon, NV, including pinobanksin-3-octanoate. This hitherto unknown derivative and five other 3-acyl-dihydroflavonols showed inhibitory activity against both P. larvae (IC50 ¼ 17e68 mM) and Ascosphaera apis (IC50 ¼ 8e23 mM), the fungal agent of chalkbrood. A structure-activity relationship between acyl group size and antimicrobial activity was found, with longer acyl groups increasing activity against P. larvae and shorter acyl groups increasing activity against A. apis. Finally, it was determined that the isolated 3-acyl-dihydroflavonols originated from Populus fremontii, and further analysis showed these compounds can also be found in other North American Populus spp.

Description

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Wilson, Pawlus, Brinkman, Gardner, Hegeman, Spivak, & Cohen. (2017). 3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis. Phytochemistry, 138, 83-92.

Other identifiers

Suggested citation

Wilson, Michael B.; Pawlus, Alison D.; Brinkman, Doug; Gardner, Gary; Hegeman, Adrian D.; Spivak, Marla; Cohen, Jerry D.. (2017). 3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/197609.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.