Investigation of core failure during excavation.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Investigation of core failure during excavation.

Published Date

2012-08

Publisher

Type

Thesis or Dissertation

Abstract

An increasing need to determine the in-situ stress state through indirect methods such as core disking has spawned much research over the past few years. While laboratory and field work have brought knowledge to the topic, many issues associated with these approaches have led to a reliance on numerical models for analysis. It is imperative that these numerical methods replicate the failure process and disk thicknesses, which are then related to a component of the in-situ stress state.</DISS_para> <DISS_para>The constitutive model of tensile softening was used to both replicate previous laboratory experiments and match the general relation between disk thickness and major principal stress. The failure process was analyzed in detail for various stress magnitudes along with size effect. Also, laboratory experiments involving the excavation of cores in a stressed rock were performed to investigate the effect of core damage on measured elastic parameters. It was determined that when the vertical stress σv = 0 and horizontal stresses σH = σh = 75 - 85% Co, where Co = uniaxial compressive strength, Young's modulus can decrease about 10% from the coring process.

Description

University of Minnesota M.S. thesis. August 2012. Major: Civil Engineering. Advisors: Professors Joseph F. Labuz and Charles Fairhurst. 1 computer file (PDF); iii, 90 pages, appendices A-B.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Wilk, Stephen Thomas. (2012). Investigation of core failure during excavation.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/135608.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.