Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator

Published Date

2014-07

Publisher

Type

Thesis or Dissertation

Abstract

Improving mobile energy storage technology is an important means of addressing concerns over fossil fuel scarcity and energy independence. Traditional hydraulic accumulator energy storage, though favorable in power density, durability, cost, and environmental impact, suffers from relatively low energy density and a pressure-dependent state of charge. The hydraulic flywheel-accumulator concept utilizes both the hydro-pneumatic and rotating kinetic energy domains by employing a rotating pressure vessel. This thesis provides an in-depth analysis of the hydraulic flywheel-accumulator concept and an assessment of the advantages it offers over traditional static accumulator energy storage.After specifying a practical architecture for the hydraulic flywheel-accumulator, this thesis addresses the complex fluid phenomena and control implications associated with multi-domain energy storage. To facilitate rapid selection of the hydraulic flywheel-accumulator dimensions, computationally inexpensive material stress models are developed for each component. A drive cycle simulation strategy is also developed to assess the dynamic performance of the device. The stress models and performance simulation are combined to form a toolset that facilitates computationally-efficient model-based design.The aforementioned toolset has been embedded into a multi-objective optimization algorithm that aims to minimize the mass of the hydraulic flywheel-accumulator system and to minimize the losses it incurs over the course of a drive cycle. Two optimizations have been performed - one with constraints that reflect a vehicle-scale application, and one with constraints that reflect a laboratory application. At both scales, the optimization results suggest that the hydraulic flywheel-accumulator offers at least an order of magnitude improvement over traditional static accumulator energy storage, while operating at efficiencies between 75% and 93%. A particular hydraulic flywheel-accumulator design has been selected from the set of laboratory-scale optimization results and subjected to a detailed design process. It is recommended that this selection be constructed and tested as a laboratory prototype.

Description

University of Minnesota M.S. thesis. July 2014. Major: Mechanical Engineering. Advisor: James D. Van de Ven. 1 computer file (PDF); vii, 155 pages, appendices A-N.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Strohmaier, Kyle Glenn. (2014). Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/165596.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.