Computer Aided Diagnosis System for Detection of Focal Cortical Dysplasia Lesions on T1 and T2 Weighted MRI

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Computer Aided Diagnosis System for Detection of Focal Cortical Dysplasia Lesions on T1 and T2 Weighted MRI

Published Date

2012-09

Publisher

Type

Thesis or Dissertation

Abstract

Focal cortical dysplasia (FCD) is the most frequent malformation for patients with pharmacoresistant epilepsy that require surgical treatment. Providing automated procedures to detect FCD lesions is greatly desirable because visual diagnosis is often challenging, time consuming, and relies highly on the individual's expertise. In this thesis, we propose two Computer Aided Diagnosis (CAD) approaches for Focal Cortical Dysplasia (FCD) lesion detection and segmentation on T1 and T2 weighted MRI. For the rst CAD system, an automatic detection algorithm for FCD lesions on T1 weighted MRI is proposed. Instead of using the traditional voxel-based analysis, we introduce a set of volume-based statistical features with Naive Bayes Classier. Subsequently, a set of cluster-based differential features with a Support Vector Machine (SVM) classier is used to eliminate the false positives (FPs) resulting from the rst processing stage. The advantage of our system lies on the use of volume-based analysis to allow the study of feature distributions in a spatial neighborhood. The second CAD system automatically segments FCD lesions on T2 weighted MRI. We present a Markov Random Field (MRF) model for the segmentation task with a particular emphasis on the incorporation of T1 information with a location prior. By integrating such location prior, we take the advantage of T1 weighted MRI in producing better differentiation of soft tissues into the T2 lesion segmentation task. The proposed algorithms are validated on a dataset that consists a total of 51 subjects with FCD lesions provided by the Radiology Department of Mayo Clinic. The experimental results show a 87% FCD lesion detection rate for T1-weighted MRI and a 100% FCD lesion detection rate for T2 weight MRI. The experimental results also show that proposed methods outperform previous methods in the literature .

Description

University of Minnesota Ph.D. dissertation.September 2012. Major: Electrical Engineering. Advisor: Mostafa Kaveh. 1 computer file (PDF); viii, 115 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Yang, Chin-Ann. (2012). Computer Aided Diagnosis System for Detection of Focal Cortical Dysplasia Lesions on T1 and T2 Weighted MRI. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/178944.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.