Experiments in non-factoid question answering

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Experiments in non-factoid question answering

Published Date

2013-08

Publisher

Type

Thesis or Dissertation

Abstract

Question Answering (QA) is the task of generating or extracting an answer for a user query from a corpus of documents. Factoid QA is the most popular and studied form of QA and has received maximum focus from the scientific community. As is apparent from the name, the information requested from these factoid questions is a bare fact and in most cases is a named entity. In a majority of cases, such information is found in a single document and does not require sentence extraction and sentence reordering. However, most interesting questions are not factoid questions. Users might request a summary of a recent event from a news article, or they might want to know about a recent remedial cure for some observed symptoms that require text extraction from five different medical documents. All such queries require sentence extraction from a single or (often) multiple documents and require sentence reordering to generate a readable answer. This task is non-trivial, and hence there is more to non-factoid QA than meets the eye. Non-factoid QA has recently drawn attention from both the Information Retrieval (IR) and Natural Language Processing (NLP) communities, but most of the research has focused on developing learning models for re-ranking the answers from a set of question-answer pairs. This thesis explores the use of different natural language (NL) structures to complement the traditional bag-of-words model to generate answers for non-factoid questions. We find that complex linguistic features like semantic role labels outperform the traditional bag-of-words model. In fact, we find that the combination of different NL structures with the bag-of-words model performs best in our experiments. We also use Feature Engineering for extracting different sets of features from a given corpus. We find that using similarity features, translation features and occurrence features produces a higher ranked result as compared to the bag-of-words model and may help bridge the semantic gap between non-factoid questions and answers.

Description

University of Minnesota M.S. thesis. August 2013. Major: Computer science. Advisor: Dr. Carolyn Crouch. 1 computer file (PDF); viii, 53 pages.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Kulkarni, Sameer Rajendra. (2013). Experiments in non-factoid question answering. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/160162.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.