Nanoporous thermosetting membranes using reactive block polymer templates.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Nanoporous thermosetting membranes using reactive block polymer templates.

Published Date

2010-08

Publisher

Type

Thesis or Dissertation

Abstract

Pressure driven membrane filtrations are a facile means of performing aqueous separations. The efficiency of these processes depends on the permeability and selectivity of a membrane, which is determined by its structure. This dissertation describes research investigating nanoporous thermosets templated by reactive block polymers as alternatives to current ultrafiltration membranes. The goal of the research was to develop materials with narrow pore size distributions and high void fractions for forming membranes with increased selectivity and permeability. The flux, filtration and fouling characteristics of membranes formed by selective removal of poly(lactide) from crosslinked films of dicyclopentadiene (DCPD) and the reactive block polymer poly(norbornenylethyl styrene-s-styrene)-b-poly(lactide) (PNS-PLA) were first explored. The results suggest that thin film composite membranes could achieve permeabilities and selectivities greater than current ultrafiltration membranes without excessive fouling characteristics. Additionally, hydrophilic and stimuli responsive membranes templated by reactive triblock terpolymers exhibited environmentally dependent fluxes demonstrating the ease of creating functionalized membranes using reactive triblock terpolymers. Further investigation into the compositional influences on the morphology of nanostructured PNS-PLA/PDCPD materials revealed that nanoporous bicontinuous structures form over a wide composition range and that different pore sizes are achievable by varying the PLA block size. Extension of reactive block polymer templating to vinyl crosslinking systems was demonstrated by crosslinking a poly(lactide)-b-poly(cyclooctene-s-norbornenylmethacrylate)-b-poly(lactide) reactive triblock copolymer with a variety of vinyl monomers. Although the soft nature of the poly(cyclooctene) prevented removal of polylactide due to collapse of the pores, nanoporous vinyl thermosets were realized by crosslinking a polylactide-b-poly(styrene-s-hydroxyethyl methacrylate-s-ethylene glycol dimetacrylate) reactive diblock copolymer with styrene and divinyl benzene.

Description

University of Minnesota Ph.D. dissertation. August 2010. Major: Chemistry. Advisor: Marc A. Hillmyer. 1 computer file (PDF); xx, 276 pages, appendices A-B. Ill. (some col.)

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Amendt, Mark A.. (2010). Nanoporous thermosetting membranes using reactive block polymer templates.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/95896.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.