Modeling the Human Visuo-Motor System for Remote-Control Operation

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Modeling the Human Visuo-Motor System for Remote-Control Operation

Published Date

2018-05

Publisher

Type

Thesis or Dissertation

Abstract

Successful operation of a teleoperated miniature rotorcraft relies on capabilities including guidance, trajectory following, feedback control, and environmental perception. For many operating scenarios fragile automation systems are unable to provide adequate performance. In contrast, human-in-the-loop systems demonstrate an ability to adapt to changing and complex environments, stability in control response, high level goal selection and planning, and the ability to perceive and process large amounts of information. Modeling the perceptual processes of the human operator provides the foundation necessary for a systems based approach to the design of control and display systems used by remotely operated vehicles. In this work we consider flight tasks for remotely controlled miniature rotorcraft operating in indoor environments. Operation of agile robotic systems in three dimensional spaces requires a detailed understanding of the perceptual aspects of the problem as well as knowledge of the task and models of the operator response. When modeling the human-in-the-loop the dynamics of the vehicle, environment, and human perception-action are tightly coupled in space and time. The dynamic response of the overall system emerges from the interplay of perception and action. The main questions to be answered in this work are: i) what approach does the human operator implement when generating a control and guidance response? ii) how is information about the vehicle and environment extracted by the human? iii) can the gaze patterns of the pilot be decoded to provide information for estimation and control? In relation to existing research this work differs by focusing on fast acting dynamic systems in multiple dimensions and investigating how the gaze can be exploited to provide action-relevant information. To study human-in-the-loop systems the development and integration of the experimental infrastructure is described. Utilizing the infrastructure, a theoretical framework for computational modeling of the human pilot’s perception-action is proposed and verified experimentally. The benefits of the human visuo-motor model are demonstrated through application examples where the perceptual and control functions of a teleoperation system are augmented to reduce workload and provide a more natural human-machine interface.

Description

University of Minnesota Ph.D. dissertation. 2018. Major: Computer Science. Advisors: Nikolaos Papanikolopoulos, Berenice Mettler. 1 computer file (PDF); 172 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Andersh, Jonathan. (2018). Modeling the Human Visuo-Motor System for Remote-Control Operation. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/198997.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.