Pharmacokinetics, pharmacodynamics, and dose optimization of fludarabine in nonmyeloablative hematopoietic stem cell transplantation.
2010-10
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Pharmacokinetics, pharmacodynamics, and dose optimization of fludarabine in nonmyeloablative hematopoietic stem cell transplantation.
Authors
Published Date
2010-10
Publisher
Type
Thesis or Dissertation
Abstract
The first goal of this research was to develop models describing pharmacokinetics and pharmacodynamics of fludarabine in a patient population undergoing nonmyeloablative hematopoietic stem cell transplantation. The second goal was to leverage model information to identify fludarabine doses that are most likely to achieve optimal outcomes after transplant. Datasets consisting of intensively sampled F-ara-A plasma concentrations after approximately 40 mg/m2 fludarabine as well as outcome data (treatment-related mortality, maximum acute graft-versus-host disease grade, and neutrophil engraftment) were available at the start of the modeling work. Population pharmacokinetic models were built using NONMEM. Covariate models for pharmacokinetic parameters were derived, including a model for the typical value of clearance in the population as a function of weight, creatinine clearance, and comorbidity score. Bayesian generalized linear models linking F-ara-A exposure to outcome probabilities were fit using OpenBUGS software. Both models were evaluated using predictive model checking methods. Fludarabine doses were optimized with respect to individual outcomes by finding the posterior probability that a certain dose would meet specific criteria defining treatment "success". Doses were optimized simultaneously across all three outcomes using a utility index defined as the product of the individual outcome success probabilities. In general, the results recommend a reduction of fludarabine doses to optimize outcomes after hematopoietic stem cell transplantation.
Description
University of Minnesota Ph.D. dissertation. October 2010. Major: Social, Administrative, and Clinical Pharmacy. Advisor: Dr. Richard Brundage. 1 computer file (PDF); xi, 165 pages, appendix A. Ill. (some col.)
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Baron, Kyle Thomas. (2010). Pharmacokinetics, pharmacodynamics, and dose optimization of fludarabine in nonmyeloablative hematopoietic stem cell transplantation.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/99324.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.