PKA phosphorylation of ATAXIN1 in Purkinje cells modulates early onset of ataxia

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

PKA phosphorylation of ATAXIN1 in Purkinje cells modulates early onset of ataxia

Alternative title

Published Date

2017-01

Publisher

Type

Thesis or Dissertation

Abstract

Spinocerebellar ataxia type 1 (SCA1) is a fatal adult-onset, autosomal dominant ataxia characterized in part by dysfunction and degeneration of Purkinje cells of the cerebellum. The fundamental basis of pathology is an aberration in the regulation of RNA splicing and gene transcription. SCA1 is caused by an unstable CAG trinucleotide repeat mutation in the ATXN1 gene that codes for a toxic ATXN1 protein with an abnormal polyglutamine repeat. Decreasing mutant ATXN1 can reverse disease phenotypes in SCA1 mouse models. Phosphorylation of ATXN1 at Serine 776 (S776) is critical for disease and this modification influences ATXN1 protein levels and protein-protein interactions, which can exacerbate toxicity. Previous in vitro studies implicated PKA, cAMP protein kinase, in phosphorylation of ATXN1 at S776. The hypothesis being tested is that PKA-mediated ATXN1-S776 phosphorylation stabilizes ATXN1 and drives pathogenic pathways involved in disease. SCA1 mouse models expressing wild type human ATXN1[30Q] or mutant human ATXN1[82Q] were crossed to a PKA mutant mice that exhibit attenuated PKA activity. I found that PKA hypofunction leads to a decrease of phospho-S776-ATXN1 and total ATXN1 expressed in cerebellar Purkinje neurons. Mouse Atxn1 protein expressed in other cerebellar cell types was unchanged, pointing to cell specificity. In order to evaluate the disease relevance of these effects, I tested SCA1 disease metrics in the affected model, including motor behavior, histopathology and gene expression changes. Motor performance was improved to wild type levels early in disease, but progressive Purkinje cell atrophy was not averted. These results hinted at a dissociation between mechanisms causing ataxia versus Purkinje cell degeneration. Indeed, RNA sequencing studies revealed transcriptional changes linked to motor dysfunction that are distinct from those associated with progressive pathology. This work suggests ATXN1 is phosphorylated by PKA in Purkinje neurons early in disease and drives pathways that underlie early onset ataxia that are independent of pathways promoting progressive neurodegeneration.

Description

University of Minnesota Ph.D. dissertation. January 2017. Major: Neuroscience. Advisor: Harry Orr. 1 computer file (PDF); vi, 128 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Perez Ortiz, Judit. (2017). PKA phosphorylation of ATAXIN1 in Purkinje cells modulates early onset of ataxia. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/185581.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.