Generating cells for lung tissue engineering

Thumbnail Image

Persistent link to this item

View Statistics

Journal Title

Journal ISSN

Volume Title


Generating cells for lung tissue engineering

Published Date




Thesis or Dissertation


Decellularization of essential organs such as the lung has become an integral part of regenerative medicine. As the availability of donors is very low reseeding of these decellularized organs with a patient's own cells is a potential therapy for those desperately in need. This way, the risks associated with allogeneic immune rejection are avoided. Some research groups have been successful in reseeding the lung with allogeneic differentiated cells. However, the barrier to presently overcome is to seed with stem cells and ensure these cells differentiate to all the desired cell types of the lung. Another obstacle is obtaining the desired number of cells for recellularization of large organs such as the lung. Scale-up methods using stirred vessel bioreactors with conditions similar to the physiological environment are a desirable alternative to conventional cell culture. In this study, I demonstrate large-scale cell culture in stirred flask bioreactors by facing the challenges of scale-up from 2D to 3D suspension culture. I also show the existence of exosomes in decellularized pig and mouse lung and identify the miRNAs (miRNAs) contained within them. MicroRNAs are becoming increasingly popular research tools as they are known to regulate many essential processes. Exosomes are enriched with miRNAs and can be shuttled between cells, thereby affecting target cell behavior. I utilized the exosomes from decellularized lungs in directed differentiation of induced pluripotent stem cells (iPSCs) to the definitive endoderm (DE) lineage and compared it with conventional differentiation methods. The exosomes had a profound effect on the morphology of the cells which will lead to further studies on exosome-directed differentiation procedures.


University of Minnesota M.S. thesis. May 2014. Major: Stem Cell Biology. Advisor: Dr. Angela Panoskaltsis-Mortari. 1 computer file (PDF); vii, 86 pages.

Related to



Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Turgut, Aylin. (2014). Generating cells for lung tissue engineering. Retrieved from the University Digital Conservancy,

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.