cis- and trans-acting transcriptional activators: characterization of single nucleotide polymorphisms and a novel two-component system of Staphylococcus aureus

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

cis- and trans-acting transcriptional activators: characterization of single nucleotide polymorphisms and a novel two-component system of Staphylococcus aureus

Published Date

2014-03

Publisher

Type

Thesis or Dissertation

Abstract

<italic>Staphylococcus aureus<italic> is a major opportunistic pathogen and a common cause of hospital- and community-acquired infections. Furthermore, infections of livestock animals by <italic>S. aureus<italic> results in billion dollar losses to agriculture producers annually. Over the last five decades antibiotic resistance has dramatically increased in <italic>S. aureus<italic> and highly pathogenic strains have emerged that threaten human and animal health. Characterization of highly pathogenic strains and novel transcriptional mechanisms and pathways is of utmost importance as it will provide a critical evolutionary understanding of the transcriptional changes that led to the emergence of successfully infectious <italic>S. aureus<italic> strains and may identify novel targets for antibacterial development. The overarching goal of research described in this thesis was to characterize and understand how novel <italic>cis<italic>- and <italic>trans<italic>-acting factors affect gene expression in <italic>S. aureus<italic>. To that end, the work and data presented investigate the effect of promoter based single nucleotide polymorphisms (SNPs) of the <italic>hla<italic> gene, encoding &#945;-toxin, on gene transcription and gene product expression. The <italic>cis<italic>-acting SNPs increased the binding affinity of the promoter to the trans-acting transcription factor SarZ. Furthermore, the <italic>S. aureus<italic> RF122 strain had increased transcriptional expression of several positive regulators and decreased transcription of negative regulators of <italic>hla<italic>, which resulted in a dramatic increase in &#945;-toxin expression and likely contributes to the increased mastitis pathogenesis of RF122. Additionally, the essentiality of the <italic>yhcSR<italic> two-component system was confirmed in the hospital-acquired methicillin resistant <italic>S. aureus<italic> WCUH29 strain. The YhcSR TCS was identified to transcriptionally activate the <italic>lacABCDE<italic> and <italic>opuCABC<italic> operons involved in cellular metabolism and osmoregulatory mechanisms, respectively. In an effort determine if a relationship existed between YhcSR and pathogenesis, studies revealed that the YhcSR TCS transcriptionally regulated, in a positive manner, the <italic>sspABC<italic> and <italic>crtOPQMN<italic> operons, encoding exported proteases and staphyloxanthin biosynthesis, which contribute to the survival of <italic>S. aureus<italic> in human blood. The data indicate that the YhcSR TCS system is an essential <italic>trans<italic>-acting global regulator in <italic>S. aureus<italic>.

Description

University of Minnesota Ph.D. dissertation. March 2014. Major: Microbiology, Immunology and Cancer Biology. Advisor: Yinduo Ji, Ph.D. 1 computer file (PDF); xviii, 208 pages, appendix p. 208.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Hall, Jeffrey W.. (2014). cis- and trans-acting transcriptional activators: characterization of single nucleotide polymorphisms and a novel two-component system of Staphylococcus aureus. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/162973.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.