Polythiophene-containing block copolymers for organic photovoltaic applications.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Polythiophene-containing block copolymers for organic photovoltaic applications.

Published Date

2009-08

Publisher

Type

Thesis or Dissertation

Abstract

Poly(3-alkylthiophene)s (P3ATs) have become the most common electron-donating material in organic photovoltaics (OPVs), and recent advances in the fabrication of polythiophene-fullerene bulk heterojunction solar cells have allowed for devices with power conversion efficiencies of up to ~6% to be realized. This efficiency has only been possible through enhancements in the active layer microstructure. This key factor allowed for better separation of the bound electron-hole pair (exciton), generated by absorption of light. Understanding how exciton dissociation and the active layer morphology affect device performance will facilitate cell optimization, ultimately leading to higher device efficiencies. Consequently, we developed two new classes of polythiophene-based block copolymers to better understand these phenomena. First, we synthesized well-defined diblock and triblock copolymers with the structures: poly(3-alkylthiophene)-b-polylactide (P3AT-PLA) and polylactide-b-poly(3-alkylthiophene)-b-polylactide (PLA-P3AT-PLA). We have observed that kinetic factors dominate phase separation for a semicrystalline polythiophene block. However, if the polythiophene moiety was amorphous the polymers self-assembled into thermodynamically stable, ordered microstructures with domain spacings on the scale of interest for charge separation in OPV cells (ca 30 nm). Polylactide was chosen as the second moiety in the block copolymers because it could be selectively etched from the polythiophene matrix with a gentle alkaline bath. This procedure led to the formation of nanoporous templates that could generate ordered bulk heterojunctions. In the second approach, P3AT chain ends were terminated with fullerene to create an internal electron acceptor-donor-acceptor, methylfulleropyrrolidine-poly(3-alkylthiophene)-methylfulleropyrrolidine (C60-P3AT-C60). Microphase separation occurred between the polymer chain and fullerene end groups, which suggested the creation of two distinct semicrystalline regimes. A compositionally similar blend of P3HT and C60 showed a similar microstructure. This comparable domain formation, coupled with the possibility of enhanced charge transfer, makes C60-P3AT-C60 a promising candidate as a material in bulk heterojunction organic photovoltaic devices.

Description

University of Minnesota Ph.D. dissertation. August 2009. Major: Chemical Engineering. Advisors: C. Daniel Frisbie and Marc A. Hillmyer. 1 computer file (PDF); xiii, 275, appendix: pages 257-275.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Boudouris, Bryan W.. (2009). Polythiophene-containing block copolymers for organic photovoltaic applications.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/54044.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.