Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Interactions Between Fluid Flow, Heat Transfer, And Particle Transport In The Presence Of Jet-Axis Switching And Realistic Fluid Movers

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Interactions Between Fluid Flow, Heat Transfer, And Particle Transport In The Presence Of Jet-Axis Switching And Realistic Fluid Movers

Published Date

2014-12

Publisher

Type

Thesis or Dissertation

Abstract

The overarching goal of this thesis is to identify and quantify new processes and phenomena related to fluid flow, heat transfer, and particle transport interacting in unique modes. The research can be categorized into three modes of interaction: (a) heat transfer processes governed by the complex patterns of fluid flow provided by real-world fluid-moving devices, (b) heat transfer processes which are governed by a naturally occurring, extraordinary fluid-flow phenomenon, and (c) interacting fluid flow, particle transport, and heat transfer all of which are governed by the aforementioned extraordinary fluid-flow phenomenon. These categories are respectively treated in individual chapters of the thesis. The traditional approach to convective heat transfer is virtually devoid of realistic fluid flow models. As a consequence, traditional convective heat transfer analysis is oversimplified to the point of being out of step with reality. This assertion is proven here, and a new fundamentals-based model of high fidelity involving realistic fluid movers of is created. Next, the extraordinary fluid flow phenomenon designated as jet-axis switching is introduced and illustrated quantitatively. This phenomenon occurs whenever a non-circular jet passes into and through an unrestricted space. When the jet is involved in a process called jet-impingement heat transfer, the zone of jet incidence is highly altered due to the axis-switching process. The ignoring of the switching process, which has been standard in all previous work on non-circular-jet impingement heat transfer, has been shown here to be highly error prone. The major part of the thesis encompasses jet-axis-switching fluid mechanics, convective heat transfer, and particle transport. An all-encompassing simulation model was created which took account of fluid-particle, particle-particle, fluid--impingement plate, and particle--impingement plate interactions, all with heat transfer. It was found that jet-axis switching exerted a major effect on the trajectories of the particles, with a corresponding impact on the particle collection efficiency of the impactor plate. The transfer of heat between the fluid and the impingement plate was little affected by any alterations in the pattern of fluid flow caused by the presence of particles. On the hand, direct particle-to-plate heat transfer is substantial.

Description

University of Minnesota Ph.D. dissertation. December 2014. Major: Mechanical Engineering. Advisor: Ephraim Sparrow. 1 computer file (PDF); viii, 139 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Gorman, John. (2014). Interactions Between Fluid Flow, Heat Transfer, And Particle Transport In The Presence Of Jet-Axis Switching And Realistic Fluid Movers. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/177164.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.